INDUSTRIAL ROBOTICS

Course Code	23ME4602C	Year	III	Semester	II
Course	Professional	Branch	ME	Course Type	Theory
Category	Elective-III	Dranch	NIE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous		Semester			
Internal	30	End	70	Total Marks:	100
Evaluation:		Evaluation:			

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Explain the fundamental concepts of automation, robotics, and CAD/CAM integration, and classify industrial robots based on coordinate systems, control systems, and structural anatomy, including end-effectors	2	1
CO2	Compare and analyse various types of robot actuators such as pneumatic, hydraulic, and electric systems, and explain the working of feedback components like position and velocity sensors used in robotic control.	2	2
CO3	Apply homogeneous transformation matrices to model robot motion and solve problems related to manipulator kinematics using D-H parameters for both forward and inverse kinematics.	3	3
CO4	Describe robotic trajectories considering path planning, obstacle avoidance, and motion types using appropriate robot programming languages and tools.	2	4
CO5	Describe the basic concepts of machine vision systems and explain the image acquisition, digitization, and processing techniques used in robotic applications	2	5

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO 1	3	2										2	
CO 2	3	3							2			2	
CO 3	3	3	2									2	
CO 4	2	3	3	2	3							2	
CO 5	2				3				2			2	

Syllabus						
Unit	Contents					
1	 INTRODUCTION: Automation and Robotics, CAD/CAM and Robotics – An overview of Robotics –present and future applications – classification by coordinate system and control system. COMPONENTS OF THE INDUSTRIAL ROBOTICS: Robot anatomy, work volume, components, number of degrees of freedom - robot drive systems, function line diagram representation of robot arms, common types of arms —requirements and challenges of end effectors, determination of the end effectors. 					
2	ROBOT ACTUATORS AND FEED BACK COMPONENTS: Actuators: Pneumatic, Hydraulic actuators, electric& stepper motors. Comparison of Electric, Hydraulic and Pneumatic types of actuation devices. Feedback components: position sensors—potentiometers, resolvers, encoders—Velocity sensors.					
3	MOTION ANALYSIS: Homogeneous transformations as applicable to rotation and translation – problems. MANIPULATOR KINEMATICS: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics—problems.					
4	GENERAL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION: Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion–Robot programming, languages and software packages-description of paths with a robot programming language.					
5	IMAGE PROCESSING AND MACHINE VISION: Introduction to Machine Vision, Sensing and Digitizing function in Machine Vision, Training and Vision System, Robotic Applications.	CO5				

T	earning	Resources
	eai iiiiig	Mesoni ces

Text Book(s):

- 1. Industrial Robotics/Groover MP/Pearson Edu.
- 2. Robotics and Control /Mittal R K & Nagrathi J /TMH.

References:

- 1. Robotics/Fu KS/ McGraw Hill.
- 2. Robotic Engineering /Richard D. Klafter, Prentice Hall
- 3. Robot Analysis and Control/ H. Asada and J.J.E. Slotine/BSP Books Pvt.Ltd.
- 4. Introduction to Robotics/John J Craig/PearsonEdu.

Course coordinator HOD