Micro Electro Mechanical Systems

Course code	23ME4601C	Year	III	Semester	I
Course category	Professional Elective	Branch	ME	CourseType	Theory
Credits	3	L-T-P	3-0- 0	Prerequisites	Material Science and Metallurgy, Manufacturing Processes
Continuous Internal Evaluation:	30	Semeste r End Evaluation:	70	Total Marks:	100

CourseOutcomes: At the end of the course students will be able to

CO's	Statement	Skill	Blooms Level	Units
CO1	Explain the core concepts of MEMS, including microfabrication techniques, scaling laws, and the integration of mechanical and electrical components at the microscale.	Understand, Communication	L2	1,2,3, 4,5
CO2	To understand basics of Micro Electro Mechanical Systems (MEMS), mechanical sensors and actuators.	Understand, Communication	L3	1
CO3	Illustrate thermal sensors and actuators used in MEMS.	Apply, Communication	L3	2
CO4	To apply the principle and various devices of Micro-Opto- Electro Mechanical Systems (MOEMS), magnetic sensors and actuators.	Apply, Modern Tool Usage Communication	L3	3
CO5	Analyze applications and considerations on micro fluidic systems.	Apply, Communication	L3	4
CO6	Illustrate the principles of chemical and biomedical micro systems.	Apply, Communication	L3	5

	Contribution of Course outcomes towards the achievement of program outcomes												
	&Strength of correlations(High:3,Medium:2,Low:1)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PSO1 PSO2									PSO2			
CO1	3	3	2	2					2		2	3	2
CO2	3	3	2	2	2				2		2	3	2
CO3	3	3	2	2	2				2		2	3	2
CO4	3	3	2	2	2				2		2	3	2
CO5	3	3	2	2	2				2		2	3	2

Unit	Contents	CO			
	INTRODUCTION: Definition of MEMS, MEMS history and development,				
	micromachining, lithography principles &methods, structural and sacrificial	001			
I	materials, thin film deposition, impurity doping, etching, surface	CO1 CO2			
	micromachining, wafer bonding, LIGA.				
	MECHANICAL SENSORS AND ACTUATORS: Principles of sensing and				
	actuation: beam and cantilever, capacitive, piezo-electric, strain, pressure, flow,				
	pressure measurement by micro phone, MEMS gyroscopes, shear mode piezo				
	actuator, gripping piezo actuator, Inch worm technology.				
	THERMAL SENSORS AND ACTUATORS: Thermal energy basics and heat				
	transfer processes, thermistors, thermodevices, thermocouple, micro machined				
II	thermo couple probe, Peltier effect heat pumps, thermal flow sensors, micro hot				
	plate gas sensors, MEMS thermo vessels, pyro electricity, shape memory alloys	CO1,			
	(SMA), U-shaped horizontal and vertical electro thermal actuator, thermally	CO3			
	activated MEMS relay, micro spring thermal actuator, data storage cantilever.				
	MICRO-OPTO-ELECTROMECHANICALSYSTEMS: Principle of				
	MOEMS technology, properties of light, light modulators, beam splitter, micro				
III	lens, micro mirrors, digital micro mirror device (DMD), light detectors, grating				
	light valve (GLV), optical switch, wave guide and tuning, shear stress				
	measurement.				
	MAGNETIC SENSORS AND ACTUATORS: Magnetic materials for MEMS	CO1,			
	and properties, magnetic sensing and detection, magneto resistive sensor, more	CO1,			
	on hall effect, magneto diodes, magneto transistor, MEMS magnetic sensor,				
	pressure sensor utilizing MOKE, mag MEMS actuators, by directional micro				
	actuator, feedback circuit integrated magnetic actuator, large force reluctance				
	actuator, magnetic probe-based storage device.				
	MICRO FLUIDIC SYSTEMS: Applications, considerations on micro scale				
IV	fluid, fluid actuation methods, dielectrophoretic (DEP), electro wetting, electro				
	thermal flow, thermo capillary effect, electro osmosis flow, optoelectro wetting	CO1,			
	(OEW), tuning using micro fluidics, typical micro fluidic channel, micro fluid				
	dispenser, micro needle, molecular gate, micro pumps. RADIOFREQUENCY				

	(RF) MEMS: RF – based communication systems, RF MEMS, MEMS							
	inductors, tuner/filter, resonator, clarification of tuner, filter, resonator, MEMS							
	switches, phase shifter.							
	CHEMICAL AND BIOMEDICAL MICRO SYSTEMS: Sensing mechanism							
V	&principle, membrane-transducer materials, chemlab-on-a-chip (CLOC)							
	chemo-resistors, chemo-capacitors, chemo-transistors, electronic nose (E-nose),							
	mass sensitive chemo-sensors, fluorescence detection, calorimetric	CO1, CO6						
	spectroscopy.							

T	• 7	D	
L ear	ning	Kesn	HITCE
LCui	111116		ui cc

Textbooks:

TEXT BOOKS:

1. Ernest O Doebelin, "Measurement Systems – Applications and Design", Tata McGraw-Hill, 2009.

Referencebooks

- 1. C. Sujatha ... Dyer, S.A., Survey of Instrumentation and Measurement, John Wiley & Sons, Canada, 2001.
- 2. Hans Kurt Tönshoff (Editor), Ichiro, "Sensors in Manufacturing" Volume 1, Wiley-VCH April 2001.
- 3. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
- 4. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2011.
- 5. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

E-Resources&otherdigitalMaterial:

- 1. Micro Electromechanical Systems | Courserahttps://nptel.ac.in/courses/112/104/112104250/
- 2. Design Of Mechatronic Systems Course