

**ADDITIVE MANUFACTURING**  
**(Open Elective-II)**

|                                        |                           |                                 |              |                       |                                                                 |
|----------------------------------------|---------------------------|---------------------------------|--------------|-----------------------|-----------------------------------------------------------------|
| <b>Course code</b>                     | <b>23ME2603</b>           | <b>Year</b>                     | <b>III</b>   | <b>Semester</b>       | <b>II</b>                                                       |
| <b>Course category</b>                 | <b>Open Elective - II</b> | <b>Offered Branch</b>           | <b>ME</b>    | <b>Course Type</b>    | <b>Theory</b>                                                   |
| <b>Credits</b>                         | <b>3</b>                  | <b>L-T-P</b>                    | <b>3-0-0</b> | <b>Pre requisites</b> | <b>Material Science And Metallurgy, Manufacturing Processes</b> |
| <b>Continuous Internal Evaluation:</b> | <b>30</b>                 | <b>Semester End Evaluation:</b> | <b>70</b>    | <b>Total Marks:</b>   | <b>100</b>                                                      |

**Course Outcomes:** At the end of the course students will be able to

| <b>CO's</b> | <b>Statement</b>                                                                                           | <b>BTL</b> |
|-------------|------------------------------------------------------------------------------------------------------------|------------|
| <b>CO1</b>  | Explain the Fundamentals and Evolution of AM, principles, classification and liquid-based AM systems.      | <b>L2</b>  |
| <b>CO2</b>  | Understand and apply different types of solid-based AM systems.                                            | <b>L2</b>  |
| <b>CO3</b>  | Apply powder-based AM systems.                                                                             | <b>L3</b>  |
| <b>CO4</b>  | Analyze and apply various rapid tooling techniques.                                                        | <b>L4</b>  |
| <b>CO5</b>  | Understand different types of data formats and explore the applications of AM processes in various fields. | <b>L2</b>  |

**Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO 1 | 3   |     | 2   | 2   |     |     |     |     | 2   |      | 2    | 3    | 2    |
| CO 2 | 3   |     | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 3    | 2    |
| CO 3 | 3   |     | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 3    | 2    |
| CO 4 | 3   |     | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 3    | 2    |
| CO 5 | 3   |     | 2   | 2   | 2   |     |     |     | 2   |      | 2    | 3    | 2    |

| <b>SYLLABUS</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <b>Unit</b>     | <b>Contents</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Mapped CO</b>         |
| <b>I</b>        | <p><b>INTRODUCTION:</b> Prototyping fundamentals, historical development, fundamentals of rapid prototyping, advantages and limitations of rapid prototyping, commonly used terms, classification of RP process.</p> <p><b>LIQUID-BASED RAPID PROTOTYPING SYSTEMS:</b> Stereo lithography Apparatus (SLA): models and specifications, process, working principle, photopolymers, photo polymerization, layering technology, laser and laser scanning, applications, advantages and disadvantages, case studies. Solid Ground Curing (SGC): models and specifications, process, working principle, applications, advantages and disadvantages, case studies.</p> | <b>CO1</b><br><b>CO2</b> |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| II  | <p><b>SOLID-BASED RAPID PROTOTYPING SYSTEMS:</b> Laminated object manufacturing (LOM) - models and specifications, process, working principle, applications, advantages and disadvantages, case studies. Fused deposition modelling (FDM) - models and specifications, process, working principle, applications, advantages and disadvantages, case studies.</p>                                                                                                                                              | CO1<br>CO3 |
| III | <p><b>POWDER BASED RAPID PROTOTYPING SYSTEMS:</b> Selective laser sintering (SLS): models and specifications, process, working principle, applications, advantages and disadvantages, case studies. three dimensional printing (3DP): models and specifications, process, working principle, applications, advantages and disadvantages, case studies.</p>                                                                                                                                                    | CO1<br>CO4 |
| IV  | <p><b>RAPID TOOLING:</b> Introduction to rapid tooling (RT), conventional tooling Vs RT, Need for RT. rapid tooling classification: indirect rapid tooling methods: spray metal deposition, RTV epoxy tools, Ceramic tools, investment casting, spin casting, die casting, sand casting process. Direct rapid tooling: Direct AIM, LOM Tools, and Direct Metal Tooling using 3DP.</p>                                                                                                                         | CO1<br>CO5 |
| V   | <p><b>RAPID PROTOTYPING DATA FORMATS:</b> STL Format, STL File Problems, consequence of building valid and invalid tessellated models, STL file Repairs: Generic Solution, other Translators, and Newly Proposed Formats.</p> <p><b>RP APPLICATIONS:</b> Application in engineering, analysis and planning, aerospace industry, automotive industry, jewelry industry, coin industry, GIS application, RP medical and bioengineering applications: customized implants and prostheses, forensic sciences.</p> | CO1<br>CO5 |

### Learning Resource

#### Textbooks:

1. Rapid Prototyping: Principles and Applications – C. K. Chua, K. F. Leong, and C. S. Lim, World Scientific Publishing.
2. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing – Ian Gibson, David W. Rosen, and Brent Stucker, 2nd Edition, Springer, 2015.

#### Reference books

1. Rapid Manufacturing – D. T. Pham and S. S. Dimov, Springer.
2. Wohlers Report 2000 – Terry T. Wohlers, Wohlers Associates.
3. Rapid Prototyping and Manufacturing – Paul F. Jacobs, ASME Press.
4. Rapid Prototyping – C. K. Chua and K. F. Leong.

#### E-Resources & other digital Material:

1. *Additive Manufacturing* – NPTEL (ME50)  
[https://onlinecourses.nptel.ac.in/noc20\\_me50/preview](https://onlinecourses.nptel.ac.in/noc20_me50/preview)
2. *Advanced Manufacturing Processes* – NPTEL (ME115)  
[https://onlinecourses.nptel.ac.in/noc21\\_me115/preview](https://onlinecourses.nptel.ac.in/noc21_me115/preview)