

INTRODUCTION TO INDUSTRIAL ROBOTICS

(Open Elective-II)

Course Code	23ME2601	Year	III	Semester	II
Course Category	Open Elective - II	Offered Branch	ME	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course outcomes: At the end of the course, the student will be able to:

CO	Statement	BTL
CO1	Explain the fundamental concepts of automation, robotics, and CAD/CAM integration, and classify industrial robots based on coordinate systems, control systems, and structural anatomy, including end-effectors.	L2
CO2	Compare and analyse various types of robot actuators such as pneumatic, hydraulic, and electric systems, and explain the working of feedback components like position and velocity sensors used in robotic control.	L2
CO3	Apply homogeneous transformation matrices to model robot motion and solve problems related to manipulator kinematics using D-H parameters for both forward and inverse kinematics.	L3
CO4	Describe robotic trajectories considering path planning, obstacle avoidance, and motion types using appropriate robot programming languages and tools.	L2
CO5	Describe the basic concepts of machine vision systems and explain the image acquisition, digitization, and processing techniques used in robotic applications	L2

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO 1	3	2										2	
CO 2	3	3							2			2	
CO 3	3	3	2									2	
CO 4	2	3	3	2	3							2	
CO 5	2				3				2			2	

SYLLABUS		
Unit	Contents	Mapped CO
I	<p>INTRODUCTION: Automation and Robotics, CAD/CAM and Robotics – An overview of Robotics –present and future applications – classification by coordinate system and control system.</p> <p>COMPONENTS OF THE INDUSTRIAL ROBOTICS: Robot anatomy, work volume, components, number of degrees of freedom - robot drive systems, function line diagram representation of robot arms, common types of arms –requirements and challenges of end effectors, determination of the end effectors.</p>	CO1

II	ROBOT ACTUATORS AND FEED BACK COMPONENTS: Actuators: Pneumatic, Hydraulic actuators, electric& stepper motors. Comparison of Electric, Hydraulic and Pneumatic types of actuation devices. Feedback components: position sensors—potentiometers, resolvers, encoders—Velocity sensors.	CO2
III	MOTION ANALYSIS: Homogeneous transformations as applicable to rotation and translation – problems. MANIPULATOR KINEMATICS: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics—problems.	CO3
IV	GENERAL CONSIDERATIONS IN PATH DESCRIPTION AND GENERATION: Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion–Robot programming, languages and software packages-description of paths with a robot programming language.	CO4
V	IMAGE PROCESSING AND MACHINE VISION: Introduction to Machine Vision, Sensing and Digitizing function in Machine Vision, Training and Vision System, Robotic Applications.	CO5

Learning Resources	
Text Book(s):	
1. Industrial Robotics: Technology, Programming and Applications – M. P. Groover, Pearson Education. 2. Robotics and Control – R. K. Mittal and I. J. Nagrath, Tata McGraw-Hill.	
References:	
1. Robotics: Control, Sensing, Vision, and Intelligence – K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, McGraw-Hill. 2. Robotic Engineering: An Integrated Approach – Richard D. Klafter, Thomas A. Chmielewski, and Michael Negin, Prentice Hall. 3. Robot Analysis and Control – H. Asada and J. J. E. Slotine, BSP Books Pvt. Ltd. 4. Introduction to Robotics: Mechanics and Control – John J. Craig, Pearson Education..	
E-Resources:	
1. <i>Introduction to Industrial Robotics</i> – NPTEL (ME161) https://onlinecourses.nptel.ac.in/noc25_me161/preview	
2. <i>Control Systems for Robotics</i> – NPTEL (DE11) https://onlinecourses.nptel.ac.in/noc20_de11/preview	
3. <i>Manufacturing Automation</i> – NPTEL (ME143) https://onlinecourses.nptel.ac.in/noc23_me143/preview	
4. <i>Industrial Robotics Lecture Videos</i> – NPTEL (via Digimat) https://tkiet.digimat.in/nptel/courses/video/112104298/L25.html	