Course Code	23ME3403	Year	II	Semester	II
Course Category	Professional Core	Offering Branch	ME	Course Type	Theory
Credits	3	L-T-P	3 -0-0	Prerequisites	Nil
Continuous		Semester			
Internal	30	End	70	Total Marks	100
Evaluation	50	Evaluation	70	i utai marks	100

THEORY OF MACHINES

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	Level	UNIT
CO1	Understand the functional details various mechanisms, and	Understand	L2	1,2,3,4,5
	their kinematic and dynamic behaviour.			
CO2	Apply graphical and Instantaneous center methods for	Apply	L3	2
	determining the velocity and acceleration of four bar and			
	slider crank mechanisms.			
CO3	Analyze the mechanisms to generate straight line motion,	Analyze	L4	1,3,4
	gear profile and gear train, and cam profile.			
CO4		Analyze	L4	3,4,5
	acting on flywheels, and perform balancing of rotating parts.			
CO5		Apply	L3	5
	forced vibrations of single degree freedom systems.			

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High (3), M:Medium (2), L:Low (1))											n of		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1						1		2	3	1
CO2	3	3	1	1						1		2	3	1
CO3	3	3	1	1						1		2	3	1
CO4	3	3	1	1						1		2	3	1
CO5	3	3	1	1						1		2	3	1

	Syllabus				
UNIT	Content	Mapped CO			
I	Simple Mechanisms: Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, mobility – Grashof's law, kinematic inversions of four bar chain and slider crank chains, Limit positions – Mechanical advantage- Transmission angle Straight line mechanisms: Accurate – Peaucellier, Scott Russul; Approximate – Grasshopper, Watt, Universal joint.	C01			
II	 Velocity Analysis: Displacement, velocity analysis of simple mechanisms of four bar, single slider mechanism using graphical method and instantaneous centers. Acceleration Analysis: Acceleration analysis of simple mechanisms of four bar, single slider mechanism using graphical method, – Coriolis component of acceleration. 	CO1, CO2			

	Gear Profile: Involute and cycloidal gear profiles, gear parameters, fundamental						
	law of gearing and conjugate action, spur gear contact ratio and						
	interference/undercutting – helical, bevel						
III	Gear train kinematics: Simple Gear Train, Compound Gear Train, Reverted	CO1, CO3,					
	Gear train, Planetary or Epicyclic Gear Train, Analysis of Epicyclic Gear Train,	CO3, CO4					
	Gyroscope: Principle of gyroscope, gyroscopic effect in an aeroplane, ship, car	04					
	and two wheelers, simple problems						
	Balancing of Rotating masses: Balancing of Rotating masses: Need for						
	balancing, balancing of single mass and several masses in different planes.						
IV	Cams: Classification of cams and followers- Terminology and definitions –						
1 V	Displacement diagrams –Uniform velocity, parabolic, simple harmonic and						
	cycloidal motions – derivatives of follower motions-pressure angle and						
	undercutting						
	Vibrations: Introduction, degree of freedom, types of vibrations, free natural						
	vibrations, Newton method and energy method for single degree of freedom.						
	Damped vibrations- under damped, critically damped; and over damped systems,						
	forced vibrations with and without damping in single degree of freedom;						
\mathbf{V}	Vibration isolation and transmissibility.						
	Turning Moment Diagrams and Flywheels: Turning moment diagrams for						
	steam engine, I.C engine and Multi Cylinder Engine. Crank effort – coefficient						
	of fluctuation of energy, coefficient of fluctuation of speed – Fly Wheel and						
	their design, fly wheels for punching press.						

LearningRecourse(s)

Text Book(s)

- 1. S.S.Rattan, Theory of Machines, 4/e, Tata Mc-Graw Hill, 2014.
- 2. P.L.Ballaney, Theory of Machines & Mechanisms, 25/e, Khanna Publishers, Delhi, 2003.

Referencebooks

- 1. F. Haidery, Dynamics of Machines, 5/e, NiraliPrakashan, Pune, 2003.
- 2. J.E.Shigley, Theory of Machines and Mechanisms, 4/e, Oxford, 2014.
- 3. G.K.Groover, Mechanical Vibrations, 8/e, Nemchand Bros, 2009.
- 4. Norton, R.L., Design of Machinery An Introduction to Synthesis and Analysis of Mechanisms and Machines, 2/e, McGraw Hill, New York, 2000.
- 5. William T. Thomson, Theory of vibration with applications, 4/e, Englewood Cliffs, N.J.: Prentice Hall, 1993

Online Learning Sources

- 1. https://archive.nptel.ac.in/courses/112/106/112106270/
- 2. https://archive.nptel.ac.in/courses/112/104/112104121/
- 3. https://onlinecourses.nptel.ac.in/noc24_me44/preview
- 4. https://archive.nptel.ac.in/courses/112/104/112104114/