P.V.P SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous) NUMERICAL METHODS AND TRANSFORM TECHNIQUES

Course Code	23BS1303	Year	II	Semester	Ι	
Course Category	Basic Science	Branch	Mechanical	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Pre- requisites	Differentiation and Integration	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon successful completion of the 0course, the student will be able to						
CO1	Understand the basic concepts of Numerical Methods and Transforms.(L2)					
CO2	Apply different Numerical methods to solve the problems of numerical differentiation, integration, ordinary differential equations.(L3)					
CO3	Apply the Laplace transforms and its properties to evaluate the integrals.(L3)					
CO4	Estimate the interpolated values, approximate roots and derivatives. (L4)					
CO5	Compute Fourier series and Fourier transforms of a Perodic signals . (L4)					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High,2:Medium,1:Low)

ι Ο	/		,											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS02
CO1	2												1	
CO2	3												1	
CO3	3												1	
CO4		3											1	
CO5		3											1	

PVP23

SYLLABUS					
Unit No.	contents	MappedCO			
I	Solution of Algebraic & Transcendental Equations, Interpolation: Introduction-Bisection method- RegulaFalsi method - Newton Raphson method,. Finite differences -Newton's forward and backward interpolation formulae – Lagrange's formulae.				
Π	Numerical Differentiation and Numerical integration : Numerical differentiation using Newton's forward & backward difference formulae. Numerical Integration by trapezoidal rule, Simpson's 1/3 rd and 3/8 th rules, Boole's Rule, Weddle's Rule.	CO1,CO2, CO4			
III	Numerical Solution of Ordinary Differential Equations of first order: Solution by Taylor's series ,Picard's Method of successive Approximations-Euler's Method and -Runge-Kutta method of fourth order-Milne,s Predictor and Corrector Method.	CO1,CO2, CO4			
IV	Laplace Transforms: Definition and Laplace transforms of some Standard functions- Shifting theorems; Laplace transforms of derivatives and integrals-unit step function-Dirac's delta function. Inverse Laplace transforms: Inverse Laplace transforms – Method of partial fraction Inverse Laplace Transform of Derivatives, Integrals, $sF(s)$, and $\frac{F(s)}{s}$	CO1,CO3,			
V	 Fourier series and Fourier Transforms: Fourier series: Introduction, Periodic functions, Fourier series of Periodic functions, Dirichlet's conditions, Even and Odd Functions, Change of interval, Half range Fourier sine and cosine series. Fourier Transforms: Fourier integral theorem (without proof) -Fourier sine and cosine integrals- sine and cosine transformsand Inverse Transform. 	C01,C05			
TextB	ooks:	11			
	 B. S. Grewal, Higher Engineering Mathematics,44/e, Khanna Publishers, 20 S.S.Sastry, Introductory Methods of Numerical Analysis, 5/e, PHI publication 	17 m, 2012.			
ReferenceBooks:					
1. Erv 2. M.K com 3. B.V.	win Kreyszig, Advanced Engineering Mathematics, 10/e, Wiley publications, 201 A.Jain, S.R.K.Iyengar and R.K.Jain , Numerical Methods for scientific and Engineering aputation,NewAge.International Publications. Ramana ,Higher Engineering Mathematics,2007 Edition,TataMc.Graw Hill Education.	11.			
Onlin https://	ne Learning Resources: ://archive.nptel.ac.in/courses/111/107/111107105/ • https://nptel.ac.in/courses/122106033				

• http://digimat.in/nptel/courses/video/111106111/L01.html