Embedded Systems

Course Code	23EC4602C	Year	III	Semester	II	
Course Category	PE-III	Branch	Branch ECE Course Type		Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Computer Organization and Architecture	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
After successful completion of the course, the student will be able to					
CO1 Describe the basics of embedded systems, their classification, memory types, communication interfaces, embedded firmware, and system components.	L2				
CO2 Distinguish between various communication devices and peripheral devices us in embedded systems.	used L3				
CO3 Differentiate standard C from Embedded C, and compilers from cross-compilers by analysing their structure, functionality, and relevance in embedded system programming.	-				
CO4 Differentiate among various tools and techniques used in embedded system development.	L4				

Streng	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (3:High, 2:Medium, 1:Low)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3								1			3	
CO2	2	2							1			3	
CO3	3	3			2				1			3	
CO4	3	3			2				1		1	3	
Avg.	3	3			2				1		1	3	

	Syllabus				
Unit No.	Contents				
1	Introduction: Embedded System-Definition, History, Classification, Application areas and Purpose of Embedded Systems, The typical embedded System-Core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Characteristics, Quality attributes of an Embedded systems, Application-specific and Domain-Specific examples of an Embedded System, Main processing elements of Embedded System	CO1, CO2			
2	Embedded Hardware Design: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watch dog timer, Real time clock.	CO1, CO2			

	Embedded Firmware Design: Embedded Firmware design	
	approaches, Embedded Firmware development languages, ISR	
2	concept, Interrupt sources, Interrupt servicing mechanism, Multiple	CO1, CO2,
3	interrupts, DMA, Device driver programming, Concepts of C versus	CO3
	Embedded C and Compiler versus Cross-compiler.	
	Hardware Software Co-Design: Fundamental Issues in Hardware	
	Software Co-Design, Computational models in embedded design,	CO1, CO2
	Hardware software Trade-offs, Integration of Hard ware and Firm	
4	ware, ICE.	
	Embedded System Development: The integrated development	
	environment, Types of files generated on cross-compilation,	
5	Dissembler/De-compiler, Simulators, Emulators and Debugging,	CO2 CO4
	Target hardware debugging, Boundary Scan, Embedded Software	CO3, CO4
	development process and tools.	

Learning Resources					
Text Books					
1. Raj Kamal, Embedded Systems: Architecture, Programming and Design, 4 th Ed., McGraw-Hill Education, 2020.					
2. Tammy Noergaard, Embedded Systems Architecture, Elsevier Publications, 2 nd Ed 2012					
Reference Books					
1. Labrosse, Embedded Systems Building Blocks, CMP publishers. 2 nd Ed., 2020					
e-Resources & other Digital Material					
1. https://nptel.ac.in/courses/108102045					