Microwave Engineering

Course Code	23EC4602B	Year	III	Semester	II
Course Category	PE-III	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	Electromagnetic and wave propagation
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1 Design of different mode waveguide structures						
CO2	Calculate S-matrix for various waveguide components and splitting the microwave energy in a desired direction.	L3				
CO3	Distinguish between Microwave tubes and Solid State Devices, calculation of efficiency of devices.	L4				
CO4 Measure various microwave parameters using a Micro wave test bench.						

Con	Contribution of Course Outcomes towards achievement of Program												
	Outcomes & Strength of Correlations (3:High, 2:Medium, 1:Low)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO 2
CO ₁	3	3	1								1	2	
CO ₂	3	2									1	2	
CO ₃	3	3									1	2	
CO4	3	3			2						1	2	
Avg.	3	3	1		2						1	2	

	Syllabus					
Unit No.	Contents	Mapped CO				
1	Microwave Transmission Lines: Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides — Transverse Electric (TE) and Transverse Magnetic (TM) mode analysis — Field expressions, Characteristic equation, Cut-off frequency, Phase velocity, Group velocity, Attenuation and Phase constants, Wavelength and Impedance.	CO1				
2	Microwave Tubes: Limitations and Losses of conventional tubes at microwave frequencies. Microwave Tubes-O type and Mtype classification, Linear Beam Tubes (O-type): Two Cavity Klystron: Velocity modulation, Bunching process, Output power and Beam loading.Reflex Klystron: Velocity modulation, Power output and Efficiency.	CO3				
3	Helix Traveling -Wave Tubes (TWTs): Slow Wave Structures, Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations. M-Type Tubes - Introduction, Cross-field Effects, Cylindrical Traveling Wave Magnetron –Hull Cut-off and Hartree Conditions,	CO3				

	Modes of Resonance and PI-Mode Operation, Separation of PI-Mode,	
	o/p characteristics	
	Microwave Waveguides and Components- Probe, Loop, Aperture	
	types. Tuning Screws and Posts, Matched Loads. Waveguide	
	Attenuators - Resistive Card and Rotary Vane type; Waveguide	
	Phase Shifters - Dielectric and Rotary Vane type. Scattering Matrix	
4	Properties - Waveguide Multiport Junctions - E plane and H plane	CO2
	Tees, Magic Tee, S- matrix. Multi-Hole Directional Coupler S-	
	matrix. Ferrites- Composition and Characteristics, Faraday rotation -	
	Isolator and Circulator.	
	Microwave Solid State Devices: Introduction, Classification,	
	Applications. TEDs – Introduction, Gunn Diode – Principle, RWH	
	Theory, Characteristics, Basic Modes of Operation, Oscillation	
5	Modes.	CO3,CO4
	Microwave Measurements: Description of Microwave Bench –	CO3,CO4
	Different Blocks and their Features, Precautions. Microwave Power	
	Measurement - Bolometer Method. Measurement of Attenuation,	
	Frequency, VSWR, Impedance Measurement.	

Learning	Resources
----------	-----------

Text Books

- 1. R.E. Collin, Foundations for Microwave Engineering, IEEE Press, John Wiley, 2nd Ed., 2010.
- 2. Annapurna Das and SisirK.Das ,Microwave Engineering, Mc-Graw Hill Education, Ed., 2020.
- 3. Samuel Y. Liao, Microwave Devices and Circuits, PHI, 3rd Ed.,2013.

Reference Books

- 1. G S N Raju, Microwave Engineering, I K International, 2008.
- 2. M.Kulkarni, Microwave and Radar Engineering, Umesh Publications, 3rd Ed., 2010.

e-Resources & other Digital Material

- 1. https://onlinecourses.nptel.ac.in/noc20_ee91/preview
- 2. https://onlinecourses.nptel.ac.in/noc21_ee72/preview
- 3. https://www.microwaves101.com/
- 4. https://youtu.be/A9SNdF7UP18