Smart and Wireless Instrumentation

Course Code	23EC4601C	Year	III	Semester	II
Course Category	PE–II	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Pre requisites	Digital Communications
Continuous Internal Evaluation	20	Semester End Evaluation	70	Total Marks	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Analyze Smart and Wireless Instrumentation with respect to various performance parameters	L4			
CO2	Design and develop Applications using WSN (Wireless sensor Network).	L4			
CO3	Demonstration of various Node architectures	L2			
CO4	Demonstration of Fundamentals of wireless digital communication	L2			
CO5	Analyze the power sources, Demonstrate an ability to design strategies as per needs and specifications	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes													
& Strength of Correlations (3:High, 2:Medium, 1:Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3				3			3			2	
CO2	3	3				3			3			2	
CO3	2					3			3			2	
CO4	2					3			3			2	
CO5	3	3				3			3			2	
Avg	3	3				3			3			2	

Syllabus						
Unit No.	Contents	Mapped CO				
1	Introduction: Sensing and Sensors, Sensor Classifications, Wireless Sensor Networks, History of Wireless Sensor networks (WSN), Communication in a WSN, important design constraints of a WSN: Energy, Self Management, Wireless Networking, Decentralized Management, Design Constraints, Security.	CO1, CO2				
2	Node architecture: The sensing subsystem: Analog to Digital converter, The processor subsystem: Architectural overview, microcontroller, digital signal processor, application specific integrated circuit, field programmable gate array (FPGA), comparison, Communication interfaces: Serial peripheral interface, inter integrated circuit, Prototypes:The IMote node architecture, The XYZ node architecture, The Hog throb node architecture	CO1, CO2, CO3				

3	Wireless Communication: Frequency of Wireless communication Development of Wireless Sensor Network based on Microcontroller and communication device -Zigbee Communication device	
4	Power sources: Power sources - Energy Harvesting Solar and Lead acid batteries-RF Energy /Harvesting-Energy Harvesting from vibration Thermal Energy Harvesting-Energy Management Techniques Calculation for Battery Selection	CO1 CO5
5	Applications: Structural health monitoring - sensing seismic events, single damage detection using natural frequencies, multiple damage detection using natural frequencies, multiple damage detection using mode shapes, coherence, piezoelectric effect, Traffic control, Health care - available sensors, Pipeline monitoring, Precision agriculture, Active volcano, Underground mining	CO1, CO2, CO5

Learning Resources

Text Books

- 1. WaltenegusDargie, Christian Poellabauer, Fundamentals of wireless sensor networks theory and practice A John Wiley and Sons, Ltd., Publication.
- 2. Subhas Chandra Mukhopadhyay, Smart Sensors, Measurement and Instrumentation Springer Heidelberg, New York, Dordrecht London, 2013.
- 3. HalitEren, Wireless Sensors and Instruments: Networks, Design and Applications, CRC Press, Taylor and Francis Group, 2006.

Reference Books

- UvaisQidwai, Smart Instrumentation: A data flow approach to Interfacing", Chapman & Hall; 1st Ed., December 2013.
- Edgar H. Callaway Jr. and Edgar H. Callaway Wireless Sensor Networks: Architectures and Protocols,

e-Resources & other Digital Material

- 1. https://nptel.ac.in/courses/117104115
- 2. https://www.scribd.com/document/708102795/Wireless-Instrumentation-eBook
- 3. https://drive.google.com/file/d/12F19IeELeSTmqeH_TVelotKxDP2SAGYn/view
- 4. https://mcet.in/wp-
 - content/uploads/EIE/2020/EIE QB/Smart%20&%20Wireless%20Instrumentation.pdf