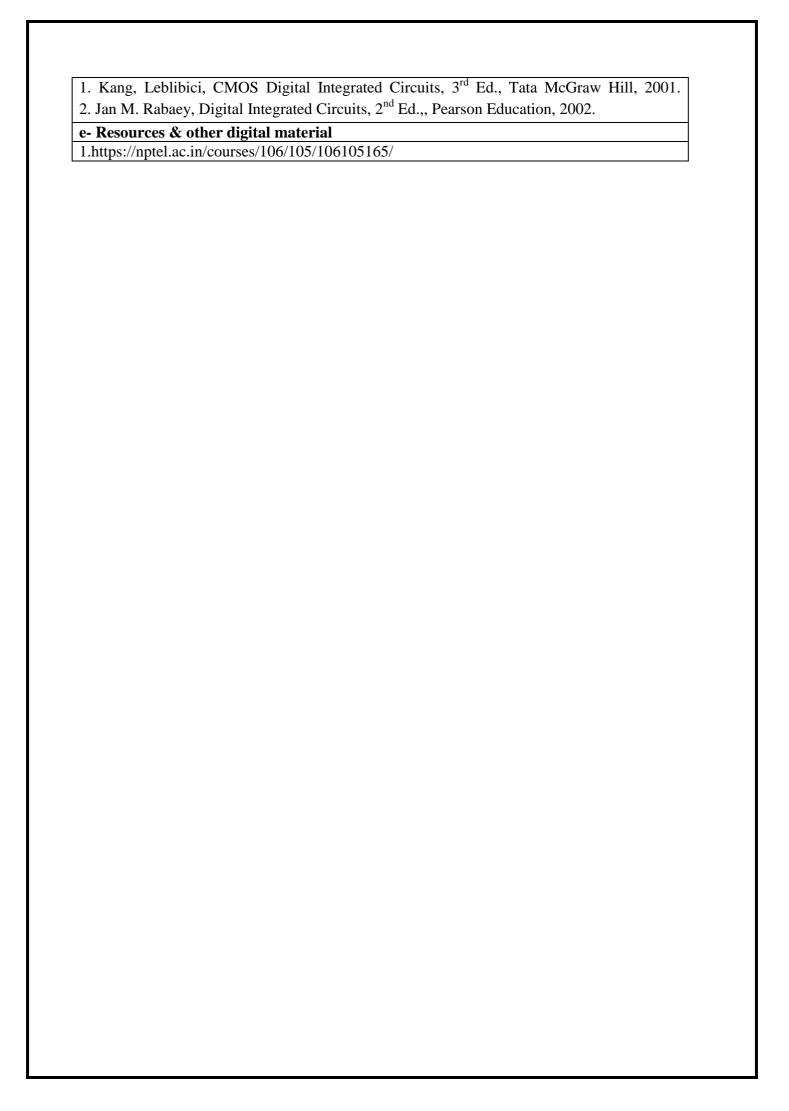
VLSI Design Lab

Course Code	23EC3651	Year	III	Semester	II	
Course Category	PC	Branch	ECE	Course Type	Lab	
Credits	1.5	L-T-P	3-0-0	Pre requisites	Switching Theory and Logic Design	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Analyze various combinational and sequential logic circuits using simulation tools	L4			
CO ₂	Model arithmetic logic circuits using simulation tools	L3			
CO ₃	Analyze various amplifiers and Oscillators using simulation tools	L4			
CO4	Simulate memories using simulation tools	L3			


Contribution of Course Outcomes towards achievement of Program Outcomes &													
Strength of Correlations (3:High, 2:Medium, 1:Low)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3			3			2	1		2	3	
CO2	3				3			2	1		2	3	
CO3	3	3			3			2	1		2	3	
CO4	3				3			2	1		2	3	
Avg.	3	3			3			2	1		2	3	

Syllabus						
Expt. No.	Mapped CO					
1	Design and implementation of an inverter	CO1				
2	Design and implementation of universal gates	CO1				
3	Design and implementation of full adder	CO1,CO2				
4	Design and implementation of full subtractor	CO1,CO2				
5	Design and implementation of RS-latch	CO1				
6	Design and implementation of D-latch	CO1				
7	Design and implementation asynchronous counter	CO1				
8	Design and Implementation of static RAM cell	CO4				
9	Design and Implementation of differential amplifier	CO3				
10	Design and Implementation of ring oscillator	CO3				

Learning Resources	
Text Books	·
1. R. Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", IEEE Press,	Wiley,
2010	
Reference Books	

