Digital Signal Processing

Course Code	23EC3603	Year	III	Semester	II	
Course Category	PC	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Signals & Systems	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Interpret discrete-time signals using DTFT.	L3			
CO2	Analyse discrete-time LTI systems using Z-transform.	L4			
CO3	Interpret discrete-time signals using DFT & Apply FFT algorithms for various				
	signal processing operations.				
CO4	Design IIR and FIR digital filters for the given specifications.	L5			
CO5	Build Digital Systems in Direct, Cascade and Parallel form structures.	L3			

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3								2		1		
CO2	3	3							2		1	1	
CO3	3								2		1	2	
CO4	3	3	3						2		1	2	1
CO5	3								2				
Average	3	3	3						2		1	2	1

	Syllabus					
Unit No.	Contents	Mapped CO				
1	Transform Analysis of Discrete-time Signals & Systems: Fourier					
	Transform of Discrete-Time Signals, Properties of Discrete-time					
	Fourier Transform (DTFT), Discrete-time LTI Systems, Convolution of discrete-time signals, Properties of LTI Systems, Analysis of	CO1, CO2				
	Discrete-time LTI Systems using Z-transform: System functions of	CO1, CO2				
	LTI systems characterized by Difference equations, Frequency					
	Response of LTI Systems, Impulse response and Step response of					
	LTI systems.					
	The Discrete Fourier Transform (DFT): Introduction to Discrete					
	Fourier Transform, Computation of DFT, Properties of DFT, Circular					
2	convolution, Linear convolution using DFT, Sectioned Convolution:	CO3				
	Overlap-add method, Overlap-save method, Relationship between Z-					
	transform and DFT					
3	Fast Fourier Transform (FFT): Introduction, Radix-2 Decimation-					
	in-time FFT algorithm, Computational Complexity of Decimation-					
	in-time FFT algorithm, Radix-2 Decimation-in-frequency FFT	CO3				
	algorithm, Computational Complexity of Decimation-in-frequency					
	FFT algorithm, Inverse DFT using FFT algorithms.					
4	Design of IIR Digital Filters: Design of Analog Prototypes from	CO4				
	Digital filter specifications using Butterworth and Chebyshev					

	approximations, Design of IIR digital filters using Impulse	
	Invariance method, Design of IIR digital filters using Bilinear	
	Transformation Method.	
5	Design of FIR Digital Filters : Symmetric and Antisymmetric FIR	
	filters, Linear discrete time systems with generalized linear phase,	
	Design of linear phase FIR filters using Window functions, Design of	CO4, CO5
	Linear Phase FIR Filters using Frequency Sampling technique.	CO4, CO3
	Realization of Discrete time systems: Realization of IIR and FIR	
	Systems - Direct, Cascade & Parallel form realizations.	

Learning Resources

Text Books

- 1. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4th Ed., Pearson Education, 2007.
- 2. Lonnie C Ludeman, Fundamentals of Digital Signal Processing, John Wiley & Sons, 2003

Reference Books

- 1 A.V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, 3rd Ed, Prentice Hall of India, 2009.
- 2. Sanjit K Mitra, Digital Signal Processing "A Computer Based Approach", Tata Mc Graw Hill 2nd Ed., 2003.

e- Resources & other digital material

- 1. http://www.nptel.iitm.ac.in/
- 2. http://www.ee.umanitoba.ca/~moussavi/dsp815/LectureNotes/index.html
- 3. http://www.ece.cmu.edu/~ee791
- 4. http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html
