VLSI Design

Course Code	23EC3601	Year	III	Semester	II	
Course Category	PC	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Switching Theory and Logic Design	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes					
Upon successful completion of the course, the student will be able to						
CO1	Demonstrate a clear understanding of CMOS fabrication flow and technology	L2				
	scaling.					
CO2	Design basic building blocks in Analog IC design	L4				
CO3	Design various CMOS logic circuits for design of Combinational and	L4				
	Sequential logic circuits.					
CO4	Analyze the behavior of static and dynamic logic circuits	L4				
CO5	Apply various Programmable Logic Devices	L3				

	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix) Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3				2						1	3	
CO2	3	2			2						1	3	
CO3	3	2			2						1	3	
CO4	3	2			2						1	3	
CO5	3				2						1	3	
Avg.	3	2			2						1	3	

	Syllabus	
Unit No	Contents	Mapped CO
1	Introduction and Basic Electrical Properties of MOS Circuits: VLSI Design Flow, Introduction to IC technology, Fabrication process: nMOS, CMOS. I _{ds} versus V _{ds} MOS transistor Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, The CMOS Inverter, Comparison between CMOS and BiCMOS technology,	CO1
2	Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, Scalingof MOS Circuits: Scaling models and scaling factors, Scaling factors for device parameters, Limitations of scaling, Limits due to sub threshold currents, Limits on logic levels and supply voltage due to noise and current density.	CO1
3	Basic Building Blocks of Analog IC Design: Common Source amplifier,	CO2,CO3

	Common Drain amplifier	
	MOS Circuit Design Process:	
	MOS Layers, Stick Diagrams, Design Rules and Layout, Layout	
	Diagrams for MOS circuits	
	CMOS Combinational and Sequential Logic Circuit Design:	
	Static CMOS Design: Complementary CMOS, Pass-Transistor Logic,	
4	design of Half adder, full adder.	CO3,CO4
	Dynamic CMOS Design: Principle of Dynamic Logic-Domino Logic,	
	Dynamic D Latch	
	FPGA Design: FPGA design flow, Basic FPGA architecture, FPGA	
5	Technologies.	CO5
	Introduction to Advanced Technologies: GaAs, GaN Technologies,	CO3
	Principles of FinFET.	

Learning Resources

Text Books

- 1. Douglas A. Pucknell, Kamran Eshraghian, Essentials of VLSI Circuits and Systems, 1 st Ed., Prentice Hall, 2012.
- 2. Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2003

References

- 1. John P. Uyemura, John Wiley &Sons, Introduction to VLSI Circuits and Systems, reprint 2009.
- 2. Vinod Kumar Khanna,IntegratedNanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies,Springer India, 1st edition, 2016.
- 3. ColingeJP, FinFETs and other multi-gate transistors, Editor New York, Springer, 2008.

e-Resources

- 1. https://nptel.ac.in/courses/108/107/108107129/
- **2.** https://www.cin.ufpe.br/~mel/pub/prototipac%E3o/referencias/CMOS_design/CMOS-VLSI-design.pdf