

FINITE ELEMENT METHOD (SYLLABUS)

SYLLABUS					
Course Code	23CE4602A	Year	III	Semester	II
Course Category	Professional Elective- III	Branch	CIVIL	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Eng Mathematics, EM, SOM, SA
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks:	100

Course Objectives (COs):

- To introduce the fundamental principles and mathematical formulation techniques of the Finite Element Method (FEM) for analyzing engineering structures and continua.
- To develop the ability to formulate finite element equations for various physical problems using variational and weighted residual methods.
- To provide the knowledge to derive element stiffness matrices and force vectors for basic structural elements like bars, trusses, beams, and plane stress/strain conditions.
- To enable students to use FEM for structural analysis problems including static, thermal, and modal analysis, and interpret the results.
- To familiarize students with iso-parametric formulations, numerical integration techniques, and the application of FEM in complex real-world civil engineering systems.

Course Outcomes:

Course will enable the student to:

CO	Statement	BL
CO1	Formulate finite element equations for simple structural problems using energy and variational principles.	L3
CO2	Compute element stiffness matrices and stresses for truss and beam elements using finite element formulations.	L3
CO3	Assemble and analyze global stiffness matrices of trusses, beams, and frame systems.	L3
CO4	Interpret displacements, strains, and stress resultants in plane stress, plane strain, and axisymmetric problems.	L4
CO5	Model and analyze planar structural systems using isoparametric finite elements and numerical integration techniques.	L4

Course Articulation Matrix:

Syllabus

Unit No	Content	Mapped COs
I	Introduction: Review of stiffness method-Principle of Stationary potential energy-Potential energy of anelastic body-Rayleigh-Ritz method of functional approximation-variational approaches- weighted residual methods	CO1, CO2
II	Finite Element formulation of truss element: Stiffness matrix-properties of stiffness matrix-Selection of approximate displacement functions-solution of a planetruss-transformation matrix and stiffness matrix for a 3-D truss-Inclined and skewed supports-Galerkin's methodfor1-Dtruss- Computation of stress in a truss element.	CO1, CO2
III	Finite element formulation of Beam elements: Beam stiffness-assemble age of beam stiffen matrix- Examples of beam analysis for concentrated and distributed loading-Galerkin's method – 2 D arbitrarily oriented beam element-inclined and skewed supports-rigid plane frame examples.	CO2, CO3
IV	Finite element formulation for plane stress, plane strain and axi symmetric problems-Derivation of CST and LST stiffness matrix and equations-treatment of body and surface forces-Finite Element solution for plane stress and axi-symmetric problems-comparison of CST and LST elements-convergence of solution-interpretation of stresses.	CO3, CO4
V	Iso-parametric Formulation: Iso-parametric bar element- plane bilinear Iso-parametric element – quadratic plane element-shape functions, evaluation of stiffness matrix, consistent modal load vector- Gauss quadrature-appropriate order of quadrature-element and mesh instabilities-spurious zero energy modes, stress computation-patch t	CO4, CO5

Learning Resource(s)
Text Book(s)
1. A first course in the Finite Element Method-Daryl L.Logan, Thomson Publications. 2. Concepts and applications of Finite Element Analysis-Robert D.Cook, Michael EPlesha, JohnWiley & Sons Publications
Reference Book(s)
1. Introduction to Finite Elements in Engineering-Tirupati R.Chandrupatla, Ashok D. Belgunda, PHI publications. 2. Finite Element Methods (For Structural Engineers) Wail N Rifaie, Ashok K Govil, New Age International(P)Limited
Web Materials:
1. https://onlinecourses.nptel.ac.in/noc22_me43/preview 2. https://archive.nptel.ac.in/courses/105/105/105105041/