Course Code	23EE2501	Year	III	Semester	Ι
Course Category	OE-I	Branch	Except EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

RENEWABLE ENERGY SOURCES

	Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamentals, significance, and advantages of various renewable energy					
	sources. (L2)					
CO2	Apply principles of solar and wind energy conversion systems to explain their components,					
02	energy generation and applications under varying environmental conditions. (L3)					
	Apply the principles of biomass, geothermal, hydel, ocean, fuel cell, MHD, and hydrogen					
CO3	energy systems to illustrate their working mechanisms and assess their applications in					
	energy generation. (L3)					
CO4	Analyze the energy conversion characteristics of solar, wind, and wave energy systems by					
04	evaluating system output parameters and interpreting performance curves. (L4)					
CO5	Work effectively in a team and communicate technical information related to renewable					
	energy systems through reports and presentations.					

C	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3		1									1		
CO3	3		1									1		
CO4		2	1									1		
CO5	3	3							3	3				

	SYLLABUS				
Unit No.	Contents	Mapped CO			
Ι	SOLAR ENERGY Introduction - Renewable Sources - prospects, solar radiation at the Earth Surface - Equivalent circuit of a Photovoltaic (PV) Cell - I-V & P-V Characteristics - Solar Energy Collectors: Flat plate Collectors, concentrating collectors - Solar Energy storage systems and Applications: Solar Pond - Solar water heating - Solar Green house.	CO1 CO2 CO4 CO5			
II	WIND ENERGY Introduction - basic Principles of Wind Energy Conversion, the nature of Wind - the power in the wind - Wind Energy Conversion - Site selection considerations - basic components of Wind Energy Conversion Systems	CO1 CO2 CO4 CO5			

	(WECS) - Classification - Applications.					
	BIOMASS, HYDEL AND GEOTHERMAL ENERGY					
	Biomass: Introduction - Biomass conversion technologies- Photosynthesis.					
	Factors affecting Bio digestion.	CO1				
III	Hydro plants: Basic working principle – Classification of hydro systems:	CO3				
	Large, small, micro hydel plants.	CO5				
	Geothermal Energy: Introduction, Geothermal Sources - Applications -					
	operational and Environmental problems.					
	ENERGY FROM OCEANS, WAVES & TIDES:					
	Oceans: Introduction - Ocean Thermal Electric Conversion (OTEC) - methods -	CO1				
	prospects of OTEC in India.	CO3				
IV	Waves: Introduction - Energy and Power from the waves - Wave Energy	CO4				
	conversion devices.	CO5				
	Tides: Basic principle of Tide Energy -Components of Tidal Energy.					
	CHEMICAL ENERGY SOURCES					
	Fuel Cells: Introduction - Fuel Cell Equivalent Circuit - operation of Fuel cell -					
	types of Fuel Cells - Applications.					
V	Hydrogen Energy: Introduction - Methods of Hydrogen production - Storage	CO1 CO3				
	and Applications	CO5				
	Magneto Hydro Dynamic (MHD) Power generation: Principle of Operation -					
	Types.					

Learning Resources					
Text Books:					
1.	G.D.Rai, Non-Conventional Energy Sources, Khanna Publications, 2011.				
2.	John Twidell& Tony Weir, Renewable Energy Sources, Taylor & Francis, 2013.				
Reference Books:					
1.	S.P.Sukhatme&J.K.Nayak, Solar Energy-Principles of Thermal Collection and Storage,				
	ТМН, 2011.				
2.	John Andrews & Nick Jelly, Energy Science- principles, Technologies and Impacts,				
	Oxford, 2 nd edition, 2013.				
3.	ShobaNath Singh, Non- Conventional Energy Resources, Pearson Publications, 2015.				
E-Re	sources:				
1.	https://archive.nptel.ac.in/courses/103/103/103103206				

2. https://archive.nptel.ac.in/courses/103/107/103107157

Course Coordinator

Module Coordinator