QUANTUM COMPUTING

Course Code	23CS4501D	Year	III	Semester	Ι
Course Category	Professional Core	Branch	CSE	Course Type	Theory
Credits	3	L - T - P	3-0-0	Prerequisites	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes	
Upon successful completion of the course, the student will be able to:		
		Leve
		1
CO1	Understand the fundamentals of quantum computing, quantum cryptography and	L2
	teleportation protocols, foundational physics principles and their role in quantum	
	information processing.	
CO2	Apply foundational mathematical and physical principle, and quantum	L3
	probability to model quantum systems and measurements.	
CO3	Apply qubit models and quantum gate operations, and represent quantum states	L3
	using Bloch sphere visualizations	
CO4	Apply quantum algorithms for a given problem and Evaluate key concepts in	L3
	quantum cryptography & information theory	
	Analyze the given scenario and use appropriate methods/mechanisms/protocols	L4
CO5	for solve classical problems using quantum paradigms	

Syllabus			
Unit No.	CONTENTS	Mapped CO	
UNIT - I	History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations	CO1	
UNIT - II	Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis.	CO1,CO2, CO5	
UNIT - III	Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.	CO1,CO3, CO5	

UNIT - IV	Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm.	CO1,CO4, CO5
UNIT - V	Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation	CO1,CO4, CO5

Learning Resources				
Text Books				
Text Books:				
1. Quantum Computation and Quantum Information, Nielsen M. A., Cambridge				
2. Programming Quantum Computers, Essential Algorithms and Code Samples, Eric R				
Johnson, Nic Harrigan, Mercedes Ginemo, Segovia, Oreilly.				
Reference Books				
 Quantum Computing for Computer Scientists, Noson S. Yanofsk, Mirco A. Mannucci 				
E-Resources & other digital material				
 Introduction to Quantum Computing: Quantum Algorithms and Qiskit - Course <u>NPTEL</u> :: Physics - NOC:Quantum Information and Computing <u>Quantum Computing - NPTEL+</u> 				