		DATA MINI	NG LAB		
Course Code	23CS3551	Year	III	Semester	Ι
Course Category	PCC	Branch	CSE	Course Type	Practical
Credits	1.5	L-T-P	0-0-3		Data Base Management Systems, Python Programming
Continuous Internal Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes	
	Upon successful completion of the course, the student will be able to:	
CO1	Apply various preprocessing techniques and Machine Learning methods on different datasets for a given problem.	L3
CO2	Implement various experiments in Jupyter Notebook Environment and Colab.	L3
CO3	Develop an effective report based on various learning methods implemented.	L3
CO4	Apply technical knowledge for a given scenario and express with an effective oral communication	L3
CO5	Analyze the outputs and visualizations generated for different datasets.	L4

	Synabas	
Exp	CONTENTS	Mapped
No.		CO
	Explore differentTools: Jupyter Notebook, PyTorch, TensorFlow, Google Colab, Kaggle.	CO1,CO2,CO3
1	Explore the different datasets: Kaggle, UCI Machine Learning Repository.	, CO4, CO5
2	Apply essential data preprocessing techniques to clean and prepare a given dataset (handling missing values, normalization, encoding categorical variables), and compute descriptive statistics (mean, median, mode, standard deviation) to summarize the data distribution and identify potential outliers or biases.	CO1,CO2,CO3 , CO4, CO5
	Apply the K-Nearest Neighbors (KNN) algorithm for both classification and regression problems. Determine the optimal number of neighbors (K) using cross-validation and evaluate using accuracy and error metrics.	CO1,CO2,CO3 , CO4, CO5
	Implement the Decision Tree algorithm for both a classification problem. Perform parameter tuning (e.g., max depth, min samples split) and evaluate using accuracy, precision, recall, F1-score (for classification)	CO1,CO2,CO3 , CO4, CO5
	Apply the Naïve Bayes classification algorithm on textual or categorical datasets and analyze its robustness using performance metrics like confusion matrix, precision, recall, and accuracy.	CO1,CO2,CO3 , CO4, CO5
	Implement a Simple Perceptron and a Multi-Layer Perceptron (MLP) using the MNIST dataset, and evaluate their classification performance using accuracy, precision, recall, and F1-score.	CO1,CO2,CO3 , CO4, CO5

7	Apply the Support Vector Machine (SVM) algorithm for classification tasks on multiple datasets and assess performance using confusion matrices, precision, recall, F1 score, and ROC-AUC curves. Also, visualize the margin and support vectors where applicable.	CO1,CO2,CO3, CO4, CO5
8	 a. Implement a Simple Linear Regression model to predict continuous output (e.g., house prices or CO₂ emissions). b. Apply Logistic Regression on classification datasets (eg: Breast Cancer, Titanic Survival, or Spam Detection) 	CO1,CO2,CO3, CO4, CO5
9	 a. Implement the K-Means clustering algorithm on synthetic and real-world datasets (e.g., customer segmentation). Evaluate using Silhouette Score, Davies-Bouldin Index, and visual clustering results. b. Implement Hierarchical Agglomerative Clustering and compare it with K-Means using dendrograms, linkage criteria, and cluster validation indices. 	CO1,CO2,CO3, CO4, CO5
10	Implement the Expectation-Maximization (EM) algorithm for clustering on Gaussian Mixture Models. Assess clustering performance using log- likelihood , BIC/AIC , and visual interpretation of clusters on 2D datasets.	CO1,CO2,CO3, CO4, CO5
11	Capstone Project: Design and implement an end-to-end Machine Learning pipeline involving problem identification, dataset selection, preprocessing, algorithm selection (classification, regression, or clustering), model building, parameter tuning, and performance evaluation using appropriate metrics.	CO1,CO2,CO3, CO4, CO5

Learning Resources	
Text Books	

- 1. Data Mining concepts and Techniques, 3rd edition, Jiawei Han, Michel Kamber, Elsevier, 2011.
- 2. Machine Learning with Python for Everyone, Mark E.Fenner, First Edition, 2020, Pearson.
- 3. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press

Reference Books

1. "Machine Learning: An Algorithmic Perspective", Second Edition, Stephen Marsland, CRC Press

2. "Machine Learning in Action", Peter Harrington, DreamTech

3. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

	E-Resources & other digital material
	1. https://www.coursera.org/learn/machine-learning
2.	https://github.com/atinesh-s/Coursera-Machine-Learning-Stanford