Course Code	23CS3401	Year	II	Semester	II
Course Category	PC	Branch	CSE/IT	Course Type	Theory
Credits	3	L – T – P	3-0-0	Prerequisites	Data structures, Computer Organization and Architecture
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to:					
CO1	Understand the structure and functionalities of operating systems	L2			
CO2	Apply different algorithms of CPU scheduling, Page replacement and disk scheduling.	L3			
CO3	Apply various concepts to solve problems related to process synchronization and deadlocks.	L3			
CO4	Analyse and interpret the functionalities of operating system.	L4			

Syllabus				
Unit No.	CONTENTS	Mapped CO		
I	Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open-Source Operating Systems System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, Operating system Design and Implementation.	CO1,CO2, CO3		
Ш	 Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication. Threads and Concurrency: Multithreading models, Thread libraries, Threading issues. CPU Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling. 	CO1,CO2,		
Ш	Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. Deadlocks: system Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.	CO1,CO3,		

	Memory-Management Strategies: Introduction, Contiguous memory	
	allocation, Paging, Structure of the Page Table, Swapping.	
	Virtual Memory Management: Introduction, Demand paging, Copy-on-	CO1,CO2,
IV	write, Page replacement, Allocation of frames, Thrashing	CO4
	Storage Management: Overview of Mass Storage Structure, HDD	
	Scheduling.	
	File System: File System Interface: File concept, Access methods,	
V	Directory Structure; File system Implementation: File-system structure,	
	File-system Operations, Directory implementation, Allocation method, Free	CO1,CO2,C
	space management; File-System Internals: File-System Mounting, Partitions	04
	and Mounting, File Sharing.	
	Protection: Goals of protection, Principles of protection, Protection Rings,	
	Domain of protection, Access matrix.	

Learning Resources Text Books

- 1. Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018.
- 2. Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson , 2016

Reference Books

- Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018
- 2. Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw-Hill, 2013

E-Resources & other digital material

- 1. https://nptel.ac.in/courses/106/106/106106144/
- 2. http://peterindia.net/OperatingSystems.html