ADVANCED DATA STRUCTURES AND ALGORITHM ANALYSIS LAB

Course Code:	23CS3351	Year:	II	Semester:	Ι
Course Category:	Professional Core Course	Branch:	CSE	Course Type:	Practical
Credits:	1.5	L-T-P:	0-0-3	Prerequisites:	Data Structures through C / Object Oriented Programming
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

COURSE OUTCOMES					
Upon successful completion of the course, Student will be able to					
CO1	Implement programs as an individual on different IDEs/ online platforms.	L3			
CO2	Apply different design techniques for solving problems.	L3			
CO3	Develop an effective report based on various programs implemented.	L3			
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	L3			
CO5	Analyze outputs using given constraints/test cases.	L4			

Unit No.	SYLLABUS CONTENTS	Mapped CO
1	a) Implement AVL Trees and its operations.b) Develop a solution to the given problem using AVL Trees.	CO1, CO2, CO3, CO4, CO5
2	a) Implement B- Trees and its operations.b) Develop a solution to the given problem using B- Trees.	CO1, CO2, CO3, CO4, CO5
3	a) Implement Binary Heap and its operations.b) Develop a solution to the given problem using Binary Heaps.	CO1, CO2, CO3, CO4, CO5
4	a) Implement Graph and its operations.b) Develop a solution to the given problem using Graphs.	CO1, CO2, CO3, CO4, CO5
5	Develop and implement an algorithm using Divide and Conquer strategy for a given set of problems.	CO1, CO2, CO3, CO4, CO5
6	Make use of Greedy method to implement a solution for a given problem.	CO1, CO2, CO3, CO4, CO5
7	Develop and implement an efficient solution using Dynamic Programming.	CO1, CO2, CO3, CO4, CO5
8	Use Backtracking design technique to implement a solution for a given problem.	CO1, CO2, CO3, CO4, CO5
9	Develop and implement an algorithm using Branch and Bound technique for solving a given problem.	CO1, CO2, CO3, CO4, CO5
10	Case Study-1: Apply the most appropriate design technique to develop and implement an efficient solution for a given problem.	CO1, CO2, CO3, CO4, CO5
11	Case Study-2: Develop and implement an optimal solution for a given problem by applying a suitable design technique.	CO1, CO2, CO3, CO4, CO5

Learning Resources					
Text Books					
1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh, 2 nd Edition Universities Press					
2. Computer Algorithms in C++, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2 nd Edition University Press					
References Text Book					
1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.					
 Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018. 					
e-Resources and other Digital Material					
1. <u>https://www.cs.usfca.edu/~galles/visualization/Algorithms.html</u>					
2. <u>http://littlesvr.ca/dsa-html5-animations/sorting.php</u>					
3. <u>https://www.youtube.com/watch?v=AfYqN3fGapc</u>					