Code: 23CS3201, 23IT3201, 23AM3201, 23DS3201

I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

DATA STRUCTURES

(Common for CSE, IT, AIML, DS)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Define a linear data structure.	L1	CO1
1.b)	State the worst-case time complexity of Bubble	L1	CO1
	Sort.		
1.c)	How is the last node of a circular linked list	L2	CO1
	identified?		
1.d)	Why does a doubly linked list require more	L2	CO1
	memory than a singly linked list?		
1.e)	Why is stack implementation using linked lists	L2	CO1
	more memory-efficient than arrays?		
1.f)	Give an example of a balanced and an	L2	CO1
	unbalanced parenthesis expression.		
1.g)	What are the basic operations performed on a	L1	CO1
	queue?		

Max. Marks: 70

1.h)	What problem does a circular queue solve that a		CO1
	simple queue does not?		
1.i)	What is the base condition for a recursive tree	L2	CO1
	traversal function?		
1.j)	What is a binary search tree (BST)?	L1	CO1

PART – B

			BL	СО	Max.		
					Marks		
		UNIT-I					
2	a)	Describe the importance of analyzing	L2	CO1	5 M		
		time and space complexities in algorithm					
		design.					
	b)	Explain Abstract Data Types (ADTs)	L2	CO1	5 M		
		with an example.					
	OR						
3	a)	Compare and contrast Linear and Binary	L2	CO2	5 M		
		Search with suitable examples.					
	b)	Write and explain the algorithm for	L3	CO2	5 M		
		Binary Search.					
		UNIT-II					
4	a)	Describe the structure of a doubly linked	L2	CO1	5 M		
		list and compare it with a singly linked					
		list.					
	b)	Compare arrays and linked lists based on	L2	CO3	5 M		
		memory usage, access time, and					
		operations.					
OR							

5	a)	Develop an algorithm to reverse a singly	L3	CO3	5 M		
		linked list and explain it.					
	b)	Explain how linked lists are used in	L2	CO3	5 M		
		dynamic memory allocation.					
	UNIT-III						
6	a)	Explain the push and pop operations in a	L3	CO2	5 M		
		stack with an example.					
	b)	Convert the following infix expression to	L3	CO4	5 M		
		postfix expression.					
		$a + b * c/(d * e + f^g) - h * k$					
		OR					
7	a)	How does a stack help in checking	L3	CO3	5 M		
		balanced parentheses? Explain with an					
		example.					
	b)	Construct a C/C++/Python program to	L3	CO3	5 M		
		implement a stack using an array.					
		UNIT-IV					
8	a)	Explain the enqueue and dequeue	L2	CO3	5 M		
		operations in a queue with an example.					
	b)	Illustrate the working of a circular queue	L3	CO3	5 M		
		with an example.					
OR							
9	a)	Analyze the time complexity of various	L4	CO4	5 M		
		queue operations in both array and linked					
		list implementation.					
	b)	Develop pseudo codes for enqueue,	L3	CO3	5 M		
		dequeue operations in a queue with					
		linked list implementation.					

UNIT-V					
10	a)	Compare binary trees and binary search	L4	CO4	5 M
		trees with respect to structure and			
		operations.			
	b)	Explain the concept of hashing and its	L2	CO3	5 M
		importance in data structures.			
	OR				
11	a)	How does recursion help in tree	L2	CO3	5 M
		traversal? Explain with an example.			
	b)	Illustrate different collision resolution	L4	CO4	5 M
		techniques in hashing with proper			
		examples.			