Code: 23CE3201, 23ME3201

I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

ENGINEERING MECHANICS

(Common for CE, ME)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Define the term Free body diagram.	L2	CO1
1.b)	State parallelogram law of forces.	L2	CO1
1.c)	Illustrate different types of trusses.	L2	CO2
1.d)	Distinguish between Static and dynamic friction.	L2	CO2
1.e)	State parallel axis theorem.	L2	CO3
1.f)	Define centroid.	L2	CO3
1.g)	List out some examples of linear motion.	L2	CO4
1.h)	Define curvilinear motion.	L2	CO4
1.i)	Write the units of the following quantities:		
	i) Angular velocity	L2	CO5
	ii) Angular acceleration		
1.j)	State D'Alembert's principle for a particle.	L2	CO5

PART – B

			BL	СО	Max. Marks
		UNIT-I		I	
2	a)	State and explicate the Lami's theorem.	L2	CO1	4 M
	b)	Compute the forces developed in the	L3	CO1	6 M
		wires, supporting an electric fixture as			
		shown in fig.			
		A 45° B 150 N			
		OR			
3	a)	Determine the resultant of three forces	L3	CO1	6 M
		acting at point O as shown in figure.			
		715 N $450N$ 2 4 $893N2$ 1 2 1 x			
	b)	Distinguish coplanar and non-coplanar systems of forces with sketches.	L2	CO1	4 M

Page **3** of **6**

UNIT-IV					
8	a)	A stone is thrown vertically upwards with	L3	CO4	5 M
		an initial speed of 30 m/s from the			
		ground. Evaluate			
		i) In what time it will reach the maximum			
		height.			
		ii) The greatest height reached by the			
		stone above the ground level.			
		iii) The velocity with which the stone			
		strikes the ground			
		iv) Total time it is in motion.			
	b)	Draw the motion curves of displacement	L2	CO4	5 M
		- time, velocity - time, acceleration -			
		time. Briefly explain.			
		OR	r		
9	a)	A motorist is travelling at 80kmph, when	L3	CO4	5 M
		he observes a traffic light 200 m ahead of			
		him turns red. The traffic light is limited			
		to stay red for 10 seconds. If the motorist			
		wishes to pass the light without stopping,			
		just as it turns to green, determine: (i) the			
		required uniform deceleration of the			
		motor, and (ii) the speed of the motor as			
		it passes the light.			
	b)	A motor car attains its maximum speed	L3	CO4	5 M
		of 80km/hr in a span of 1.2km. It			
		continues at the speed for a distance of			
		1.8km and then a uniform retardation			
		brings it to rest in 3 min. How far does			
		the car travel and what is the total elapsed			
		time.			

UNIT-V						
10	a)	A flywheel of diameter 50 cm starts from	L3	CO5	5 M	
		rest with constant angular acceleration				
		20 rad/s^2 . Determine the tangential and				
		the normal components of acceleration of				
		a point on its rim 3 s after the motion				
		began.				
	b)	A rotor decreases uniformly from	L3	CO5	5 M	
		rotating speed of 1800 rpm to rest in				
		320 s. Determine its angular deceleration				
		and the number of radians rotated before				
		coming to rest.				
		OR				
11	1 The 30 kg disc shown in figure, is pin				10 M	
	supported at its center. The disc is at rest. A					
	constant moment M of 5 N-m is applied to the					
	disc and a constant force F of 10 N is applied					
	at the end of a rope wrapped on the disc.					
	Determine the number of revolutions made by					
	the	disc when its angular velocity becomes 20				
	rad	/s.				
	0.2 pr					