I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

ENGINEERING CHEMISTRY

(Common for CE, ME)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Identify various units of hardness and the relationship between them.	L2	CO1
1.b)	Predict which salts are responsible for temporary and permanent hardness of water?	L2	CO1
1.c)	Describe Pilling Bedworth ratio.	L2	CO1
1.d)	List the applications of lithium ion battery.	L1	CO1
1.e)	Define functionality of monomers.	L1	CO1
1.f)	Describe the significance of bio fuel.	L2	CO1
1.g)	Classify composites.	L2	CO1
1.h)	Describe how thermal conductivity of a refractory related to its porosity?	L2	CO1
1.i)	Define the term adsorption.	L1	CO1
1.j)	Identify the advantages of using neem leaf extract for the synthesis of gold nanoparticles.	L2	CO1

PART - B

			BL	СО	Max. Marks
		UNIT-I			
2	a)	Illustrate the causes, consequences and	L3	CO2	5 M
		preventive methods for caustic			
		Embrittlement in boiler feed water.			
	b)	Explain the principle involved in Reverse	L4	CO4	5 M
		osmosis. Discuss the desalination of			
		Brackish water by Reverse Osmosis			
		method.			
		OR			
3	a)	Analyze and calculate the temporary,	L4	CO4	5 M
		permanent and total hardness of water			
		sample containing following impurities:			
		$Mg(HCO_3)_2 = 16.8 mg/L, MgSO_4 = 24.0$			
		mg/L and $NaCl = 58.5 mg/L$			
	b)	Discuss about priming and foaming.	L3	CO2	5 M
		Mention their prevention methods.			
		UNIT-II			
4	a)	Define fuel cell. Analyze the working	L4	CO4	5 M
		principle of hydrogen – oxygen fuel cell			
		with reactions. Write the advantages of			
		fuel cells.			
	b)	Discuss the factors affecting rate of	L3	CO2	5 M
		corrosion by metal.			
OR					

5	a)	Analyze the following cell,	L4	CO4	5 M
		Ni/Ni ⁺² (0.01M)//Cu ⁺² (0.5M)/Cu			
		The standard reduction potential of Ni			
		and Cu are -0.25 & 0.34 V respectively.			
		Write the electrode reactions and			
		calculate the EMF of the cell at 298 K.			
		$E^0 Ni^{+2} / Ni = -0.25 V,$			
		$E^0 Cu^{+2} / Cu = 0.34 V$			
	b)	What is galvanic corrosion? Illustrate	L3	CO2	5 M
		corrosion control methods.			
		UNIT-III			
6	a)	Define octane number of gasoline.	L3	CO2	5 M
		Discuss its significance and how is it			
		measured? Why ethylene dibromide is			
		added when TEL is used as an anti knock			
		reagent?			
	b)	Explain proximate analysis of coal. How	L4	CO4	5 M
		is it carried out?			
	T	OR	1	1 1	
7	a)	Explain the significance of calorific value	L4	CO4	5 M
		in fuel analysis.			
	b)	Discuss the mechanism of step growth	L3	CO2	5 M
		polymerization of Bakelite.			
UNIT-IV					
8	a)	Distinguish the acidic, basic and neutral	L4	CO5	5 M
		refractories with suitable examples.			

	b)	Discuss the characteristics of good	L3	CO3	5 M
		lubricants and give their significance.			
		OR			
9	a)	Explain flash and fire point of a lubricant.	L4	CO5	5 M
	b)	Describe the chemical composition of	L3	CO3	5 M
		ordinary Portland cement and its			
		functions.			
		UNIT-V			
10	a)	Discuss the advantages and limitations of	L3	CO3	5 M
		the Braggs method for synthesizing			
		colloidal particles.			
	b)	Explain BET equation. Mention the	L4	CO5	5 M
		application of the BET equation in the			
		characterization of nanoporous materials.			
	OR				
11	a)	How does the Freundlich isotherm differ	L3	CO3	5 M
		from the Langmuir isotherm in terms of			
		adsorption behavior?			
	b)	List out the steps involved in synthesis of	L4	CO5	5 M
		nanoparticles by using sol-gel method.			