I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

ENGINEERING PHYSICS

(Common for EEE, ECE, CSE)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Describe the properties or characteristics of	L2	CO1
	LASER.		
1.b)	State the basic principle used in optical fiber for	L1	CO1
	transmission of light.		
1.c)	Establish a relation between the atomic radius(r)	L3	CO3
	and the interatomic distance (a) for a Face		
	centered cubic unit cell.		
1.d)	Illustrate any two applications of X-ray	L3	CO3
	diffraction studies.		
1.e)	Develop the following relation $P = \varepsilon_0 (\varepsilon_r - 1) E$.		CO5
1.f)	Deduce the relation $B = \mu_0 (M+H)$.		CO3
1.g)	Show that De-brogile wavelength $\lambda = h/P$.		CO3
1.h)	Discuss the salient features of classical free		CO3
	electron Theory.		

1.i)	Illustrate the energy level diagrams for intrinsic		CO4
	and extrinsic (P-type, N-type) semiconductors.		
1.j)	List any two applications of Hall effect.	L1	CO1

	O Max.				
	Marks				
UNIT-I					
2 a) Demonstrate construction and working L3 C	O2 6 M				
mechanism of He-Ne Laser with					
suitable diagram.					
b) Distinguish spontaneous and stimulated L4 C	O4 4 M				
emissions.					
OR					
3 a) Obtain an expression for numerical L3 C	O2 5 M				
aperture of an optical fiber in terms of					
refractive indices of core and cladding.					
b) An optical fiber has the core and L4 C	O4 5 M				
cladding refractive indices 1.45 and					
1.44 respectively. Find the acceptance					
angle of optical fiber.					
UNIT-II					
4 a) Show that FCC is the most closely L3 C	O3 6 M				
packed of the three cubic structures by					
working out the packing fractions.					
b) Copper has FCC structure and the L4 C	O5 4 M				
atomic radius is 0.1278nm. Calculate					
the inter planar spacing for (110) plane.					

PART – B

 wave equation for a free particle of mass 'm' and energy 'E'. b) Calculate the De Broglie's wave length L4 CO5 4 M associated with a proton moving with a velocity of 1/10th of velocity of light. 			OR			
diagram for the determination of crystal structure. Image: structure in the intervent of the image in	5	a)	reinforcement of diffracted X-rays from	L4	CO5	4 M
6 a) Define the term relative permittivity. L4 CO5 5 M Derive an expression for Clausius-Mosotti equation. b) Discuss the Electronic polarization and derive the Electronic polarizability. L3 CO3 5 M 6 a) Differentiate between hard and soft derive the Electronic polarizability. L4 CO5 5 M 7 a) Differentiate between hard and soft magnetic materials? Explain their applications. L3 CO3 5 M b) Explain the important features of ferromagnetic materials? L3 CO3 5 M UNIT-IV 8 a) Derive Schrodinger's Time independent mass 'm' and energy 'E'. L4 CO5 4 M b) Calculate the De Broglie's wave length avelocity of 1/10 th of velocity of light. L4 CO5 4 M		b)	diagram for the determination of crystal	L3	CO3	6 M
Image: Provide the second system of the s			UNIT-III			
Image: derive the Electronic polarizability. Image: constraint of the electronic polarizability. 7 a) Differentiate between hard and soft magnetic materials? Explain their applications. L4 CO5 5 M 7 a) Differentiate between hard and soft magnetic materials? Explain their applications. L4 CO5 5 M b) Explain the important features of ferromagnetic materials? L3 CO3 5 M UNIT-IV 8 a) Derive Schrodinger's Time independent mass 'm' and energy 'E'. L3 CO3 6 M b) Calculate the De Broglie's wave length associated with a proton moving with a velocity of 1/10 th of velocity of light. L4 CO5 4 M	6	a)	Derive an expression for Clausius-	L4	CO5	5 M
7a)Differentiate between hard and soft L4CO55 Mmagnetic materials? Explain their applications.applicationsb)Explain the important features of ferromagnetic materials?L3CO35 MUNIT-IV8a)Derive Schrodinger's Time independent mass 'm' and energy 'E'.L3CO36 Mb)Calculate the De Broglie's wave length a velocity of 1/10 th of velocity of light.L4CO54 M		b)	-	L3	CO3	5 M
magnetic materials? Explain their applications. magnetic materials? Explain their applications. b) Explain the important features of ferromagnetic materials? L3 CO3 5 M UNIT-IV 8 a) Derive Schrodinger's Time independent for a free particle of mass 'm' and energy 'E'. L3 CO3 6 M b) Calculate the De Broglie's wave length associated with a proton moving with a velocity of 1/10 th of velocity of light. L4 CO5 4 M			OR			
Image: state of the state	7	a)	magnetic materials? Explain their	L4	CO5	5 M
 8 a) Derive Schrodinger's Time independent L3 CO3 6 M wave equation for a free particle of mass 'm' and energy 'E'. b) Calculate the De Broglie's wave length L4 CO5 4 M associated with a proton moving with a velocity of 1/10th of velocity of light. 		b)		L3	CO3	5 M
 wave equation for a free particle of mass 'm' and energy 'E'. b) Calculate the De Broglie's wave length L4 CO5 4 M associated with a proton moving with a velocity of 1/10th of velocity of light. 			UNIT-IV			
associated with a proton moving with a velocity of 1/10 th of velocity of light.	8	a)	wave equation for a free particle of	L3	CO3	6 M
\mathbf{OR}		b)	associated with a proton moving with a velocity of $1/10^{\text{th}}$ of velocity of light. (mass of proton = 1.67 x 10^{-27} kg).	L4	CO5	4 M

a)	Explain the concept of density of states.	L3	CO3	2 M	
b)	Explain Fermi energy and Fermi Dirac	L4	CO5	8 M	
	distribution function. Illustrate the				
	effect of temperature on the distribution.				
	UNIT-V				
a)	Derive an expression for the carrier	L4	CO4	6 M	
	concentration of P-type Extrinsic				
	semiconductor.				
b)	Explain Insulators, semiconductors,	L3	CO2	4 M	
	conductors according to origin of				
	energy band theory.				
OR					
a)	Define Hall effect. Derive an expression	L4	CO4	6 M	
	for the Hall coefficient.				
b)	Explain Drift, Diffusion currents.	L3	CO2	4 M	
	b) a) a)	 b) Explain Fermi energy and Fermi Dirac distribution function. Illustrate the effect of temperature on the distribution. b) Explain fermi energy and Fermi Dirac distribution. Illustrate the effect of temperature on the distribution. b) Derive an expression for the carrier concentration of P-type Extrinsic semiconductor. b) Explain Insulators, semiconductors, conductors according to origin of energy band theory. a) Define Hall effect. Derive an expression for the Hall coefficient. 	b)Explain Fermi energy and Fermi Dirac distribution function. Illustrate the effect of temperature on the distribution.L4a)Derive an expression for the carrier concentration of P-type Extrinsic semiconductor.L4b)Explain Insulators, semiconductors, conductors according to origin of energy band theory.L3ORa)Define Hall effect. Derive an expressionL4	b)Explain Fermi energy and Fermi Dirac distribution function. Illustrate the effect of temperature on the distribution.L4CO5UNIT-Va)Derive an expression for the carrier concentration of P-type Extrinsic semiconductor.L4CO4b)Explain Insulators, semiconductors, conductors according to origin of energy band theory.L3CO2ORa)Define Hall effect. Derive an expressionL4CO4	