I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

CHEMISTRY

(Common for IT, AIML, DS)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level CO – Course Outcome

		BL	CO
1.a)	State the Heisenberg's uncertainty principle.	L1	CO2
1.b)	Explain O_2 molecule is paramagnetic in nature based on MOT.	L2	CO2
1.c)	What is a superconductor? Give an example.	L1	CO2
1.d)	Define super capacitor. Give an example.	L1	CO2
1.e)	Differentiate between anode and cathode.	L2	CO2
1.f)	Define the principle of Potentiometric titration.	L1	CO2
1.g)	Express the functionality of monomer with an example.	L2	CO1
1.h)	Name the monomer of Nylon-6,6.	L1	CO1
1.i)	State the Beer-Lambert's law.	L1	CO1
1.j)	Write the principle of High-Performance Liquid Chromatography.	L1	CO3

$\mathbf{PART} - \mathbf{A}$

PART – B

					Marks			
		UNIT-I						
2	<i>,</i>	Illustrate the molecular orbital diagram of	L3	CO2	5 M			
	(O_2 and calculate the bond order.						
1	b) I	Draw the π -molecular orbital diagram of	L4	CO4	5 M			
	1	1, 3-butadiene.						
		OR						
3 8		Derive the Schrodinger wave equation.	L3	CO2	5 M			
	S	State the significance of ψ and ψ^2 .						
1	b) I	Draw the π -molecular orbital diagram of	L4	CO4	5 M			
	I	Benzene.						
	UNIT-II							
4	<i>,</i>	Construct the band diagrams of	L3	CO2	5 M			
		conductors, insulators and						
		semiconductors.						
	b) (Classify super capacitors based on their	L4	CO4	5 M			
	C	characteristics and explain them in detail.						
OR								
5 8	a) I	Explain the applications of	L4	CO4	5 M			
	S	semiconductors.						
1	b) V	What are the types of carbon nanotubes?	L3	CO2	5 M			
	(Give their applications.						

		UNIT-III					
6	a)	Describe the construction and working of	L3	CO2	5 M		
0	<i>a)</i>	Lithium-ion battery.	LJ		J IVI		
	b)	Discuss the conductometric titration of	ΙΔ	CO4	5 M		
	0)	strong acid and strong base.	LT		5 101		
	OR						
7	a)	Explain construction and working of	L4	CO4	5 M		
	,	H_2 - O_2 fuel cell.					
	b)	Derive the Nernst equation of a single	L3	CO2	5 M		
		electrode potential.					
		I		I I			
		UNIT-IV					
8	a)	Differentiate between thermoplastics and	L4	CO5	5 M		
		thermosetting plastics.					
	b)	Interpret the synthesis and applications of	L3	CO3	5 M		
		buna-N rubber.					
		OR					
9	a)	What are biodegradable polymers? Write	L3	CO3	5 M		
		the synthesis and applications of PGA.					
	b)	Explain the preparation and applications	L4	CO5	5 M		
		of Bakelite.					
UNIT-V							
10	a)	Explain the classification of	L3	CO3	5 M		
		chromatography.					
	b)	Make use of neat diagrams to explain	L4	CO5	5 M		
		modes of vibrations.					
	OR						

11	a)	Describe the instrumentation of UV-	L3	CO3	5 M
		Visible spectroscopy.			
	b)	Explain the electronic transitions in UV-	L4	CO5	5 M
		Visible spectroscopy.			