I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common for ALL BRANCHES)

Duration: 3 hours	Max. Marks: 70
-------------------	----------------

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

	1	•	1 1	1
BL – Bloor	ns Level			CO – Course Outcome

		BL	CO
1.a)	Find the integrating factor that makes the	L2	CO1
	equation $y(x^2y^2+2)dx + x(2-x^2y^2)dy = 0$ exact.		
1.b)	Solve $xdy - ydx = xy^2 dx$.	L3	CO2
1.c)	Find the particular integral of $(D^2 + 4)y = \cos 2x$.	L3	CO2
1.d)	Find the solution of $(D^2 + D + 1)y = 0$.	L2	CO1
1.e)	Form the partial differential equation by	L3	CO2
	eliminating the arbitrary function from		
	$z = f(x^2 - y^2).$		
1.f)	Solve $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$.	L2	CO1
1.g)	Calculate the maximum value of the directional	L3	CO3
	derivative of $\phi = x^2 yz$ at (1, 4, 1).		
1.h)	Calculate the unit normal to the surface $xy = z^2$ at	L3	CO3
	(4, 1, 2).		

PART – A

1.i	i)	State Gauss divergence's theorem.	L1	CO1
1.j	j)	Given $F(t) = (5t^2 - 3t)i + 6t^3j - 7tk$, then evaluate	L3	CO3
		$\int_{t=2}^{4} F(t) dt.$		

PART	– B	
------	------------	--

	r		1	0	
			BL	CO	Max.
			DL		Marks
		UNIT-I			
2	a)	Solve the differential equation	L3	CO2	5 M
		$\frac{dy}{dx} + \frac{y}{x} = y^2 x \sin x.$			
	b)	If the air is maintained at 30°C and the	L4	CO4	5 M
		temperature of the body cools from 80 [°] C to			
		60° C in 12 minutes, find the temperature of			
		the body after 24 minutes.			
		OR			
3	a)	Solve $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$.	L3	CO4	5 M
	b)	Bacteria in a culture growing exponentially	L4	CO4	5 M
		so that the initial number has doubled in			
		three hours. How many times the initial			
		number will be present after 9 hours.			
	1			1	
		UNIT-II			
4	a)	Solve $(D^2 + 2D + 2)y = e^{-x} + \sin 2x$.	L3	CO2	5 M
	b)	Solve $(D^2 - 3D + 2)y = xe^x$.	L3	CO2	5 M
		OR		•	

5	Usi	ng method of variation of parameters, solve	L4	CO4	10 M		
	$\left(D^{\dagger}\right)$	$^{2}+1$) $y=\cos x$.					
	`	· · · · · · · · · · · · · · · · · · ·					
		UNIT-III					
6	a)		L3	CO2	5 M		
		eliminating the arbitrary function from					
		$z = f(x^2 + y^2) + x + y$.					
	b)	Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$.	L3	CO2	5 M		
	1	OR	[
7	a)	Solve the partial differential equation	L4	CO4	5 M		
		$(D^2 - 2DD' + D'^2)z = \sin x$.					
	b)		L4	CO4	5 M		
		$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{x+y}.$					
	1	UNIT-IV		1			
8	a)	Find the directional derivative of	L4	CO5	5 M		
		$\phi = xy^2 + yz^2$ at (2, -1, 1) in the direction of					
		$\bar{\iota} + 2\bar{j} + 2\bar{k}.$					
	b)	Find the angle between surfaces	L3	CO3	5 M		
		$xy^2z = 3x + z^2$ and $3x^2 - y^2 + 2z = 1$					
		at (1,-2, 1).					
		OR					
9	a)	A vector field is given by	L4	CO5	5 M		
		$\overline{f} = 2xyz^3\overline{i} + x^2z^3\overline{j} + 3x^2yz^2\overline{k}$, then					
		show that the field is irrotational and find					
		its scalar potential function.					

	b)	If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $r = \overline{r} $ then find	L3	CO3	5 M
		$div\left(\frac{\bar{r}}{r^3}\right).$			
		UNIT-V			
10	a)	Calculate $\int_{S} \bar{F} \cdot \bar{n} ds$ where	L3	CO5	5 M
		$\overline{F} = z\overline{\iota} + x\overline{j} - 3y^2 z\overline{k}$ and 'S' is			
		$x^2 + y^2 = 1$ in the first octant between			
		z = 0 to $z = 2$.			
	b)		L3	CO5	5 M
		$\int_{C} \left[(x+y)dx + (2x-z)dy + (y+z)dz \right] $ where 'C'			
		is the boundary of the triangle with the			
		vertices (2, 0, 0), (0, 3, 0) and (0, 0,6).			
		OR			
11	Ver	rify the Green's theorem in the plane for	L4	CO5	10 M
	$\int_{C} (x)$	$(y^2 - xy^3)dx + (y^2 - 2xy)dy$ where 'C' is a square			
	wit	h vertices (0, 0), (2, 0), (2, 2), (0, 2).			