I B.Tech - II Semester – Regular Examinations - JULY 2024

ENGINEERING MECHANICS

(Common for CE, ME)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.

PART – A

- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

		BL	CO
1.a)	What is meant by non-coplanar concurrent system?	L1	CO1
	Give an example.		
1.b)	What is a Free Body Diagram (FBD)? Draw FBD	L1	CO1
	of a cylinder of weight 'W' resting on a floor.		
1.c)	Recall coefficient of friction.	L1	CO2
1.d)	Define truss. List out the types of trusses.	L1	CO2
1.e)	Define the term Area Moment of inertia.	L1	CO3
1.f)	Show the positions of centroid of semicircle and	L1	CO3
	quarter circle from the base.		
1.g)	What are the differences between kinematics and	L1	CO4
	kinetics?		COT
1.h)	State D'Alembert's principle? How it is applied in	L1	CO4
	solving problems relating to dynamics?		04
1.i)	Explain the difference between linear and angular	L2	CO5
	velocity.	L	
1.j)	What is instantaneous axis of rotation?	L1	CO5

CO – Course Outcome

DI

Max. Marks: 70

PART – B

Page **2** of **4**

	m/s ² reaching their maximum speeds of 90 kmph				
	and 72 kmph respectively. If they cross each				
	other midway between the stations, find the				
	distance between the stations and the time taken				
	by each other.				
	OR				
9	Determine the constant force 'P' that will give	L3	CO4	10 M	
	the system of bodies shown in Fig. 7 , a velocity				
	of 5 m/sec after moving 8 m from rest.				
	Coefficient of friction between the block and the				
	plane is 0.25. Pulleys are smooth.				
	250 N				
	P - 1000 N				
	500 N				
	4 m 0				
	3m Fig. 7				
	UNIT-V				
10		1.3	CO5	10 M	
10	block of 600N is suspended by a rope wound round	20	000	10 101	
	the pulley as shown in Fig. 8. Determine the				
	resulting acceleration of the weight and tension in				
	the rope.				
	a a				
	motion				
	600 N				
	Fig. 8				
OR					
11	The motion of a flywheel around its geometrical	L3	CO5	10 M	
	axis is described by the equation: $\omega = 15t^2 + 3t + 2$				
	rad/s and angular displacement is 160 radians at				
	t=3 seconds. Find the angular acceleration,				
	velocity, displacement at $t = 1$ second.				