I B.Tech - II Semester – Regular Examinations - JULY 2024

ENGINEERING CHEMISTRY (Common for CE, ME)

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

_	 -
BL – Blooms Level	CO – Course Outcome

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Define Reverse osmosis.	L1	CO2
1.b)	What is BIS?	L1	CO2
1.c)	What is a fuel cell?	L1	CO1
1.d)	Define Pillingbedworth rule.	L1	CO1
1.e)	Define Functionality of monomer.	L1	CO2
1.f)	What is HCV & LCV?	L1	CO2
1.g)	What is a refractory?	L2	CO1
1.h)	Explain why Thick film lubricant mechanism is	L2	CO5
	known as hydrodynamic mechanism.	L2	COJ
1.i)	What is a Micelle?	L1	CO3
1.j)	Write the equation of Freundlich adsorption	L2	CO3
	isotherm.	L2	COS

Max.

PART – B

			BL	СО	Max.	
					Marks	
	UNIT-I					
2	a)	Explain Estimation of hardness of water	L2	CO2	5 M	
		by EDTA method.				
	b)	Write a note on Electro dialysis.	L1	CO2	5 M	
OR						
3	a)	Illustrate ion exchange process with a	L2	CO2	5 M	
		neat labelled diagram.				
	b)	Write a note on Caustic Embrittlement.	L1	CO2	5 M	
		UNIT-II				
4	a)	What is a battery? Explain construction,	L3	CO2	5 M	
		working and applications of Zinc-air				
		battery.				
	b)	Explain Electro chemical corrosion by	L2	CO2	5 M	
		Evolution of Hydrogen mechanism.				
	•	OR		1		
5	a)	What is a fuel cell? Explain H ₂ -O ₂ Fuel	L2	CO2	5 M	
		cell with a neat diagram.				
	b)	What is electro less plating? Explain it	L2	CO4	5 M	
		with an example.				
				1		
		UNIT-III				
6	a)	What is addition polymerization? Explain	L3	CO4	5 M	
		mechanism involved in preparation of				
		polyvinyl chloride.				
	•				•	

	b)	Explain Fractional distillation method	L3	CO4	5 M
		with a neat labelled diagram.			
		OR	L		
7	a)	List out the engineering applications of	L2	CO2	5 M
		the composites.			
	b)	Write the characteristic of a monomer for	L2	CO4	5 M
		step by growth polymerization with an			
		example.			
		UNIT-IV			
8	a)	Explain boundary film and Extreme	L2	CO4	5 M
		pressure lubricating mechanism.			
	b)	Describe the factors affecting refractory	L2	CO5	5 M
		materials.			
		OR			
9	a)	What is Portland cement? Explain	L3	CO5	5 M
		reactions involved in setting and			
		hardening of cement.			
	b)	Write the applications of structural	L2	CO5	5 M
		reinforced composites and fibres.			
		UNIT-V		,	
10	a)	Illustrate how colloids are prepared using	L2	CO5	5 M
		Braggs method.			
	b)	Write the applications of nanomaterials	L2	CO3	5 M
		in various fields.			
		OR			

11	a)	Explain how nano metal oxides are	L3	CO3	5 M
		prepared using stabilizing agents.			
	b)	Write a note on Langmuir adsorption	L2	CO5	5 M
		isotherm.			