

Code: 23EE4501B

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2025

RENEWABLE ENERGY RESOURCES
(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours**Max. Marks: 70**

Note: 1. This question paper contains two Parts A and B.
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 4. All parts of Question paper must be answered in one place.

BL – Blooms Level**CO – Course Outcome****PART – A**

		BL	CO
1.a)	Explain solar insolation.	L2	CO1
1.b)	Classify different types of concentrating collectors.	L2	CO1
1.c)	Explain Betz's limit in Wind power.	L2	CO1
1.d)	List out main applications of wind energy.	L3	CO2
1.e)	Identify some organic materials used in bio-mass plant.	L2	CO1
1.f)	Mention two operational problems in geothermal power plants.	L2	CO1
1.g)	Explain tidal energy.	L2	CO1
1.h)	Identify two limitations of wave energy.	L2	CO1
1.i)	What are the advantages of MHD generation?	L2	CO1
1.j)	Discuss two challenges in hydrogen storage.	L2	CO1

PART – B

			BL	CO	Max. Marks
UNIT-I					
2	a)	Interpret the advantages of concentrating collectors over flat plate collectors.	L3	CO2	4 M
	b)	Explain the I-V characteristics of a solar cell and define fill factor. What is the significance of fill factor?	L4	CO4	6 M

OR

3	a)	Interpret how solar radiation is analyzed when Incident on tilted surface.	L3	CO2	4 M
	b)	Discuss the working principle of a solar pond and elaborate on its major applications in renewable energy systems.	L3	CO2	6 M

UNIT-II

4	a)	Discuss the nature of wind and the factors affecting the power available in the wind.	L2	CO1	5 M
	b)	Show the disadvantages of WECS and explain briefly.	L3	CO2	5 M

OR

5	a)	Explain the operational characteristics of WECS.	L4	CO4	5 M
	b)	Interpret the site selection considerations for setting up a Wind Energy Conversion System (WECS).	L3	CO2	5 M

UNIT-III

6	a)	Interpret the factors affecting bio-digestion and their impact on biogas production.	L3	CO3	5 M
	b)	Interpret about dry and wet fermentation process.	L3	CO3	5 M

OR

7	a)	Describe different types of geothermal sources and their utilization in power generation.	L3	CO3	4 M
	b)	Interpret Mini hydel power plant with a neat sketch.	L3	CO3	6 M

UNIT-IV

8	a)	Illustrate OTEC methods with neat sketches.	L3	CO3	5 M
	b)	Draw the schematic layout of a tidal powerhouse and interpret the power generation.	L3	CO3	5 M

OR

9	a)	Interpret in brief about wave energy conversion devices.	L3	CO3	5 M
	b)	Discuss the prospects and potential of OTEC in India.	L2	CO1	5 M

UNIT-V

10	a)	Describe the fuel cell equivalent circuit and interpret the significance of each component.	L3	CO3	6 M
----	----	---	----	-----	-----

	b)	Interpret the advantages and limitations of fuel cells over conventional power generation methods.	L3	CO3	4 M
--	----	--	----	-----	-----

OR

11	a)	Describe the methods of hydrogen storage and discuss their applications in the energy sector.	L3	CO3	5 M
	b)	Interpret the principle of operation of MHD power generation with a neat diagram.	L3	CO3	5 M