II B.Tech - II Semester – Regular Examinations - MAY 2025

THEORY OF MACHINES (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

		BL	CO
1.a)	What is the degree of freedom of a mechanism?	L2	CO1
1.b)	Classify different types of constrained motion?		CO1
1.c)	What is the Coriolis component of acceleration?	L2	CO1
			CO2
1.d)	(.d) State kennedy's theorem		CO1
	State Kennedy's theorem.		CO2
1.e)	Explain about interformed	L2	CO1
	Explain about interference.		CO3
1.f)	L.f) Explain about a Gear train.		CO1
			CO3
1.g)			CO1
U,	Explain about Dynamic balancing.		CO4
1.h)			CO1
,	What is pressure angle in Cam?	L2	CO4
1.i)	Explain about coefficient of fluctuation of		CO1
	energy.		CO5
1.j)			CO1
· J7	What is damping coefficient?	L2	CO5

$\mathbf{PART} - \mathbf{A}$

PART - B

			BL	СО	Max. Marks	
	UNIT-I					
2	a)	Classify kinematic pairs with a neat	L2	C01	6 M	
		sketch.				
	b)	Sketch any two inversions of single slider	L2	CO1	4 M	
		crank chain.				
		OR				
3	a)	Explain any one of the approximate	L2	CO1	5 M	
		straight line mechanisms.				
	b)	What is a Hook's joint and where is it	L2	CO1	5 M	
		used?				
		UNIT-II				
4	In a	four bar chain ABCD, AD is fixed and is	L3	CO1	10 M	
	150	mm long. The crank AB is 40mm long		CO2		
	and rotates at 120 r.p.m. clockwise, while the					
	link $CD = 80$ mm oscillates about D. BC and					
	AD are of equal length. Calculate the angular					
	velo	ocity of link CD when angle $BAD = 60^{\circ}$				
	by i	nstantaneous center method.				
OR						
5	For	configuration of slider-crank mechanism	L3	CO1	10 M	
	sho	wn, calculate acceleration of Slider B.		CO2		
		E 450 A 480 60 0 60 (mm) G				

UNIT-III						
6	a)	Classify different types of gear trains.	L2	CO1	6 M	
				CO3		
	b)	State law of gearing.	L2	CO1	4 M	
				CO3		
	L	OR				
7	An	aeroplane flying at 240 km/hr turns	L3	CO1	10 M	
	towards the left and completes a quarter circle			CO4		
	of 60 m radius. The mass of the rotary engine					
	and the propeller of the plane is 450 kg with a					
	radius of gyration of 320 mm. The engine					
	speed is 2000 rpm clockwise when viewed					
	froi	n the rear. Determine the gyroscopic				
	cou	ple on the aircraft and state its effect.				
		UNIT-IV				
8	A s	haft carries four masses A, B, C and D of	L3	CO1	10 M	
	mag	gnitude 200 kg, 300 kg, 400 kg and 200 kg		CO4		
	resp	pectively and revolving at radii 80 mm,				
	70	mm, 60 mm and 80 mm in planes				
	mea	asured from A at 300 mm, 400 mm and				
	700	mm. The angles between the cranks				
	mea	asured anticlockwise are A to B 45°, B to				
	C 7	0° and C to D 120°. The balancing masses				
	are	to be placed in planes X and Y. The				
	dist	ance between the planes A and X is 100				
	mm	h, between X and Y is 400 mm and				
	bet	ween Y and D is 200 mm. If the balancing				
	mas	sses revolve at a radius of 100 mm, find				
	thei	r magnitudes and angular positions.				

OR							
9	Exp	plain with sketches the different types of	L2	CO1	10 M		
	can	ns and followers.		CO3			
UNIT-V							
10	a)	Derive natural frequency of free	L2	CO1	5 M		
		longitudinal vibrations.		CO5			
	b)	A vibrating system consists of a mass of	L3	CO1	5 M		
		200 kg, a spring of stiffness 80 N/mm		CO5			
		and a damper with damping coefficient of					
		800 N/m/s. Determine the frequency of					
		vibration of the system.					
OR							
11	Exp	plain and Draw Turning moment diagram	L2	CO1	10 M		
	of s	team engine.		CO4			