Code: 23ME3402

II B.Tech - II Semester – Regular Examinations - MAY 2025 FLUID MECHANICS AND HYDRAULIC MACHINES (MECHANICAL ENGINEERING)

Duration: 3	hours
--------------------	-------

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

CO – Course Outcome

		BL	CO
1.a)	Write applications of capillarity.	L1	CO1
b)	What is Cohesion.	L1	CO1
c)	Classify fluid flows.	L2	CO2
d)	List application of Bernoulli's equation.	L1	CO2
e)	Define boundary layer separation.	L1	CO3
f)	Give two examples in everyday life where	L2	CO3
	formation of boundary layer is important.		
g)	Write about draft tube.	L1	CO4
h)	Classify hydraulic turbines.	L1	CO4
i)	Write about cavitation in pumps.	L2	CO5
j)	How do you select the type of turbine.	L1	CO5

PART – A

PART - B

			BL	CO	Max. Marks		
	UNIT-I						
2	a)	The surface tension of water in contact with	L3	CO1	5 M		
		air is given as 0.0725 N/m. The pressure					
		outside the droplet of water of diameter					
		0.02 mm is 100 kPa. Calculate the pressure					
		within the droplet of water.					

	b)	Classify differential manometers and	L2	CO1	5 M		
		explain anyone of them.					
	OR						
3	a)	In a stream of glycerin in motion, at a	L3	CO1	5 M		
		certain point the velocity gradient is 0.25					
		m/s. The mass density of fluid is 1270					
		kg/m ³ and kinematic viscosity is 6.3×10^{-4}					
		m ² /s. Calculate shear stress at that point.					
	b)	A simple manometer (U-tube) containing	L3	CO1	5 M		
		mercury is connected to a pipe in which an					
		oil of specific gravity 0.8 is flowing. The					
		pressure in the pipe is vacuum. The other					
		end of the manometer is open to					
		atmosphere. Find the vacuum pressure in					
		pipe, if the difference of mercury level in					
		the two limbs is 200 mm and height of oil					
		in the left-limb from the centre of the pipe					
		IS 150 mm below.					
1		UNIT-II A pipe line 200 m long has a slope of 1 in	12	CO2	5 M		
4	a)	A pipe line 500 lin long has a slope of 1 lin 100 and tapara from 1 2m diamatar at the	L3	CO2	3 IVI		
		high and to 0 6m at the law and The					
		discharge through the pipe is 5.4 m^3 /min. If					
		the pressure at the high and is 70 kPa find					
		the pressure at the low and Neglect the					
		losses					
	b)	Derive the Bernoulli's equation from the	1.3	CO2	5 M		
	0)	Euler's equation.	L 5	002	5 101		
		OR					
5	a)	Differentiate between the rotational and	L2	CO2	5 M		
	-	irrotational flows.					
	b)	The water is flowing through a tapering	L3	CO2	5 M		
		pipe having diameters 0.3 m and 0.15 m at					
		inlet and outlet respectively. The discharge					
		through the pipe is 0.04 m^3 /sec. The inlet is					

		10 m above datum and outlet is 6 m above					
		datum Find the intensity of pressure at					
		outlet if that at inlet is 400 kN/m^2					
6	a)	Explain the different methods of preventing	L2	CO3	5 M		
		separation of boundary layers.					
	b)	A smooth plate 2 m wide and 2.5 m long is	L3	CO3	5 M		
		towed in oil (sp. gr. $= 0.8$) at a velocity of					
		1.5 m/s along its length. Find the thickness					
		of boundary layer and shear stress at the					
		trailing edge of the plate. Kinematic					
		viscosity of oil is 10^{-4} m ² /s.					
		OR					
7	a)	The velocity distribution in the boundary	L3	CO3	5 M		
		layer is $\frac{u}{U} = \frac{1.5y}{\delta} - \frac{y^2}{2\delta^2}$ where δ is the					
		boundary layer thickness. Determine					
		(i) displacement thickness (ii) Momentum					
		thickness and (iii) Energy thickness.					
	b)	Differentiate stream lined body and bluff	L2	CO3	5 M		
		body.					
	1	UNIT-IV		1			
8	a)	Find an expression for force exerted by a	L3	CO4	5 M		
		fluid jet on stationary flat plate.					
	b)	Explain the working of Francis turbine with	L2	CO4	5 M		
		neat diagram.					
		OR		1			
9	a)	Differentiate between Impulse turbine and	L2	CO4	5 M		
		Reaction turbine.					
	b)	A 150 mm diameter jet moving at 30m/s	L3	CO4	5 M		
		impinges on a curved vane moving at 15m/s					
		in the direction of the jet. The jet leaves the					
		vanes at 60° with the direction of motion of					
		the vanes. Calculate: (i) Force exerted by					
		the jet in the direction of motion of vanes					
		(ii) Work done by the jet per second.					

UNIT-V					
10	a)	Draw and discuss characteristic curves of	L4	CO5	5 M
		centrifugal pump.			
	b)	A turbine is to operate under a head of 25	L4	CO5	5 M
		meters at 200 rpm. The discharge is $9 \text{ m}^3/\text{s}$.			
		If the turbine efficiency is 90% determine:			
		(i) specific speed of the turbine			
		(ii) power generated			
		(iii) performance under a head of 20 meters.			
		Also state the type of the turbine.			
		OR			
11	a)	A single-acting reciprocating pump,	L3	CO5	5 M
		running at 50 rpm delivers 0.01 m ³ /s of			
		water. The diameter of the piston is 200 mm			
		and stroke length 400 mm. Determine			
		(i) the theoretical discharge of the pump,			
		(ii) co-efficient of discharge and			
		(iii) slip and the percentage slip of the			
		pump.			
	b)	A centrifugal pump is to discharge 0.118	L3	CO5	5 M
		m ³ /s at a speed of 1450 rpm against a head			
		of 25 m. The impeller diameter at outlet is			
		250mm and its width at outlet is 50mm and			
		Manometric efficiency is 75%. Determine			
		vane angle at outer periphery of the			
		impeller.			