II B.Tech - II Semester – Regular Examinations - MAY 2025

INDUCTION AND SYNCHRONOUS MACHINES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1	-	1 1	1
BL – Blooms Level	l		CO – Course Outcome

PART – A

		BL	CO
1.a)	Infer why the induction motor never runs at synchronous speed.	L2	CO1
1.b)	State the reason of skewed rotor bars in 3 phase squirrel cage induction motor.	L2	CO1
1.c)	Identify the condition for maximum torque developed in three phase induction motor.	L2	CO2
1.d)	Write the relation of speed with respect to poles. How it is employed in speed control of induction motor?	L2	CO2
1.e)	Identify why single phase induction motor is not a self-starting?	L2	CO4
1.f)	List the application of a shaded pole single phase induction motor.	L2	CO4
1.g)	List the types of synchronous machines with respect to its rotor construction.	L2	CO3

Max. Marks: 70

1.h)	State the conditions for connecting two	L2	CO5
	alternators in parallel.		
1.i)	What do mean by damper windings? Mention its	12	CO5
	function and where it is located.		
1.j)	Infer the role of synchronous condenser in power	1.2	CO5
	system application.	LZ	

PART – B

			BL	СО	Max. Marks							
	UNIT-I											
2	2 Explain the constructional features of Squirrel cage L2 CO2 10											
	induction motor and compare with the slip ring											
	indu	iction motor.										
	1	OR										
3	The	power input to a 3phase induction motor is 60	L3	CO2	10 M							
	kW	The stator losses are 1 kW. Calculate the										
	mec	hanical power developed and rotor copper loss per										
	pha	se if the motor is running with a slip of 3 %.										
	I											
		UNIT-II										
4	a)	Derive the torque equation of three phase	L3	CO4	5 M							
		induction motor.										
	b)	Interpret the V/F speed control method of	L3	CO4	5 M							
		induction machine.										
	OR											
5	5 Predetermine the efficiency of the three phase L4 CO2 10 M											
	indu	action machine and examine the performance										
	para	meters with the procedure to draw the circle										
	diag	gram.										
<u> </u>	1	Page 2 of 4		L	L							

						UN	IT-III	- -					
6	Explain the double field revolving theory and infer th											CO2	10 M
	construction and working principle of single phas												
	inductio	n m											
	OR												
7	Illustrat	l pole	L3	CO4	10 M								
	induction machine with its characteristics.												
	I										1	L	
						UN	IT-IV						
8	Explain	the	CO	nstruc	ction	and	worki	ng pi	rincip	le of	L4	CO3	10 M
	Synchro	nou	s g	enera	tor	and	infer	the	diffe	rence			
	between the two rotors.												
							OR						
9	The foll	owii	ng da	ata we	ere ob	otaine	d for th	ne OC	C of	a 10	L4	CO5	10 M
	MVA, 1	3 kV	V , 3	Phase	e, 50 I	Hz, Y	conne	cted					
	synchro	nous	s gen	erato	r:								
	Field												
	current	50	75	100	125	150	162.5	200	250	300			
	(A)												
	0.C		07	10 5	11.0	10.0	10.0	14.0	15.0	150			
	voltage	6.2	8.7	10.5	11.8	12.8	13.2	14.2	15.2	15.9			
	(kV) An exci	tatio	n of	100	Δου	1000 +1	ho full	loade		ent to			
	flow du												
	required giving the rated current at zero pf and total												
	voltage is 290 A.												
	 (i) Calculate the adjusted synchronous reactance of the machine. (ii) Calculate the leakage reactance of the machine assuming the registence to be neglicible. 												
	Ċ	assuming the resistance to be negligible.											

	sup	ermine the excitation required when the machine plies full load at 0.8 pf lagging by using the leakage ctance and drawing the MMF phasor diagram. What								
	is the voltage regulation of the machine? Also									
	calculate the voltage regulation for this loading using									
		adjusted synchronous reactance. Compare and								
	con	nment upon the results.								
		UNIT-V								
10	a)	Explain the construction and working principle of	L4	CO3	5 M					
		Synchronous Motor.								
	b)	Explain the variation of current and power factor	L4	CO3	5 M					
		of a synchronous motor with excitation.								
	OR									
11	1 Explain the procedure for constructing 'V' curves and L4 CO5 10 M									
	Inverted 'V' curves of Synchronous motor.									