II B.Tech - II Semester – Regular Examinations - MAY 2025

HYDRAULICS & HYDRAULIC MACHINERY (CIVIL ENGINEERING)

Duration: 3 hours

Code: 23CE3403

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.

PART – A

- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

		BL	CO
1.a)	What is the effect of change in Reynold's number on the friction factor in turbulent flow?	L2	CO1
1.b)	What is role of boundary layer theory to enhance the velocity of golf ball?	L2	CO1
1.c)	What is the significance of Moody's chart?	L2	CO2
1.d)	Write the limits of Reynolds number for open channel flow and pipe flow.	L1	CO2
1.e)	What conditions are to be satisfied for a channel section is said to be efficient channel section?	L2	CO3
1.f)	If water is flowing through a pipe of 5 cm diameter under a pressure of 20 N/cm ² and a mean velocity of 2 m/s, find the kinetic head?	L2	CO3
1.g)	Provide the details of turbines efficiency based on the depth of flow.	L2	CO4
1.h)	Distinguish between steady and unsteady flow.	L2	CO4
1.i)	For a fully-developed pipe flow, how does the pressure vary with the length of the pipe?	L2	CO5
1.j)	What is priming of a pump?	L1	CO5

CO – Course Outcome

PART – B

		BL	СО	Max. Marks		
	UNIT-I					
2			CO1	10 M		
	viscous fluid flowing between two fixed					
	parallel plates.					
	OR					
3	Explain the boundary layer theory with	L3	CO1	10 M		
	various applications, using the concept of					
	displacement, momentum and energy					
	thickness for a flat plate.					
	UNIT-II					
4	Derive the following conditions for most	L4	CO2	10 M		
	economical trapezoidal channel section.					
	i) Side length = half of the top width					
	ii) hydraulic mean depth (m) = $d/2$					
	OR					
5	A canal of trapezoidal section has a bed width	L4	CO2	10 M		
	of 7 m and bed slope of 1 in 3500. If the					
	depth of flow is 2.7 m and side slopes of the					
	channel are 1 horizontal to 3 vertical,					
	determine the average flow velocity and the					
	discharge carried by the channel. Also					
	compute the average shear stress at the					
	channel boundary. Take value of Chezy's					
	constant= 50.					
UNIT-III						
6	a) The discharge of water through a	L4	CO3	5 M		
	rectangular channel of width 8m, is					
	18 m^3 /s when the depth of water is 1.2 m.					
	Calculate: (i) specific energy of the					
	flowing water, (ii) Critical depth and					

	I		[
		Critical velocity, and (iii) value of			
		minimum specific energy.			
	b)	The depth of flow of water, at a certain	L4	CO3	5 M
		section of a rectangular channel of 4m			
		wide is 0.5 m. The discharge through the			
		channel is 18 m ³ /sec. If a hydraulic jump			
		takes place on the downstream side, find			
		the depth of flow after the jump.			
		OR			
7	Fine	d the slope of the free water surface in a	L4	CO3	10 M
	rectangular channel of width (i) 20m and				
	(ii) 30m, having depth of flow 5m. The				
	discharge through the channel is $60 \text{ m}^3/\text{s}$. The				
	bed	of the channel is having a slope of 1 in			
	400	0. Take the value of Chezy's constant			
	C =	60.			
	•	UNIT-IV		<u> </u>	
8	a)	Derive an expression for force exerted by	L3	CO4	5 M
		a jet on inclined plate moving in the			
		direction of jet.			
	b)	Draw the velocity triangles, work done	L3	CO4	5 M
	,	and maximum hydraulic efficiency of a			
		Pelton wheel turbine.			
		OR		<u>. </u>	
9	The	e penstock supplies water from a reservoir	L4	CO4	10 M
		the Pelton wheel with a gross head of			
		m. One third of the gross head is lost in			
	friction in the penstock. The rate of flow of				
	water through the nozzle fitted at the end of				
		penstock is 2.0 m^3/s . The angle of			
		lection of the jet is 165°. Determine the			
	power given by the water to the runner and				
	also hydraulic efficiency of the Pelton wheel.				
		the speed ratio = 0.45 and $Cv = 1.0$.			
<u> </u>					

	UNIT-V					
10	a)	Briefly explain the main parts of	L3	CO5	5 M	
		centrifugal pump with neat sketches.				
	b)	The internal and external diameters of the	L3	CO5	5 M	
		impeller of a centrifugal pump are				
		200 mm and 400 mm respectively. The				
		pump is running at 1200 r.p.m. The vane				
		angles of the impeller at inlet and outlet				
		are 20° and 30° respectively. The water				
		enters the impeller radially and velocity				
		of flow is constant. Determine the work				
		done by the impeller per unit weight of				
		water.				
	OR					
11	a)	Explain the Cavitation in centrifugal	L4	CO5	5 M	
		pump, its effects and precautions.				
	b)	How will you obtain an expression for the	L3	CO5	5 M	
		minimum speed for starting a centrifugal				
		pump?				