Code: 23CE3401

II B.Tech - II Semester - Regular Examinations - MAY 2025

CONCRETE TECHNOLOGY (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	What are the factors influencing the setting of cement?	L2	CO1
1.b)	Mention the different grades of cement.		CO1
1.c)	What is the significance of compaction in fresh concrete?	L2	CO2
1.d)	What is segregation in concrete, and how does it affect quality?	L3	CO2
1.e)	What is gel/space ratio?	L2	CO3
1.f)	List out non-destructive methods of concrete.	L2	CO3
1.g)	How is the dynamic modulus of elasticity different from the static modulus of elasticity?	L3	CO4
1.h)	What are the effects of creep on concrete structures?	L2	CO4
1.i)	What is ready-mixed concrete, and how is it different from site-mixed concrete?	L2	CO5
1.j)	List different types of fibers used in fiber-reinforced concrete.	L2	CO5

PART - B

		BL	СО	Max. Marks					
UNIT-I									
2	Discuss the chemical composition of	Portland L2	CO1	10 M					
	cement and explain its impact	on the							
	properties of cement.								
	OR								
3	What are the roles of fly ash and sil	lica fume L2	CO1	10 M					
	as supplementary cementing mate	erials in							
	concrete? How do they impro	ove the							
	performance of concrete?								
	UNIT-II								
4	What is workability in fresh	concrete? L2	CO2	10 M					
	Explain the factors that influence wo	orkability							
	and their significance in concrete pro-	duction.							
OR									
5	Describe the process of shotcrete app	plication. L3	CO5	10 M					
	What are its benefits, and whe	ere is it							
	commonly used in construction proje	cts?							
UNIT-III									
6	What is the flexure test for	hardened L2	CO2	10 M					
	concrete? Discuss the test procedure	e and its							
	significance in evaluating the	bending							
	strength of concrete.								
	OR								

7	Discuss the role of curing in the strength	L2	CO3	10 M			
	development of hardened concrete. What are						
	the effects of improper curing on concrete						
strength and durability?							
UNIT-IV							
8	Explain types of shrinkage.	L3	CO4	10 M			
OR							
9	Discuss how creep can affect the	L2	CO4	10 M			
	serviceability and long-term performance of						
	concrete elements.						
	UNIT-V						
10	Explain the process of quality control in	L3	CO3	10 M			
	concrete. Why is quality control essential in						
	ensuring the desired properties and						
	consistency of the final concrete mix?						
	OR						
11	Illustrate mix proportioning of M35 grade of	L2	CO2	10 M			
	concrete as per IS code specifications.						