
.., 0 .., .. "" .. Q
.

.., 0 "" .. Q
.

0
........

........
........

........
.......

........
........

........
.......

........
0

0
0

0
0

0
0

0
0

0
u o u u o o o

u o
o o

~
N

N

N

N

N

N

N

N

N

N

a:l

~
~

~
~

~
~

~
~

~
~

0
;:,,...

0
·-

.0
I-<

C
l)

......
......

"'O
0

C
l)

0
-

C
l)

C
l)

r/l
u

C
-•

"'O
g

ro
"'O

;:,,...

I-<
o

~
{5

§

o
Cl)

0
0

fj
eo

0..
Cl)

r/l
C

l)

~
-

~
C

l)

~
~

b
So

ell

~
r/l

........
-

·a
ro

ro
0

.0
0

·-
0

C
l)

0
i-

0
'§

"'O
0

r/l
I-<

·-
C

l)
......

0..
·-

u
~

...... f
·-

-
"'O

~
ro

"'O
~

ro
~

......
.........

§

I-<
;::,

C
l)

Q
)

0
~

C
l)

Q

.0
I-<

.0
e

N

~
C

-· ·-
C+-<

·-
Ji

Q
)

r/l
-

.........
r/l

0
Q

)
~

ro
.0

Q
)

(!)
u

......
. c::

(!)
ell

"'O

ro
(!)

0
;::,

~
;::,

r/l
C

l)
·-

C
l)

.........
~

0
r/l

C
l)

0
I-<

.0
"'O

r/l i
"'O

8 .~
...... e- ~

'J~
C+-<

·-
C+-<

~
0

C
l)

~
C

l)
0

0
eo

0
5. :.a

<
..cl

r/l
~

·-
~

......
C

-•
C

l)
C

l)
(!)

0
......

;:,,...
-

C
l)

(!)
C

l)
;::,

b
0

(!)
..cl

..cl
C

l)
o

d
ro

"'O

0
0

§

I-<
o

......
......

.g
~

§

0
(!) .~

C
l)

r/l
.~

C
l)

......
..cl

,fl
C

l) ·-
"'O

..cl
......

......
0

.....
~

C
-·

C
l)

~
0

ell
.....

......
"'O

......
ro

......
t;:::

ro
~

......
;:l

......
(!)

~
~

~
. c::

~
> ·-

r/l
C

l)
C

l)
C

l
"'O

r/l

.........
......

;5
~

·- ·-
ell

~
0

Cl.l
(!)

~ o
>

I-<

'cd' ,,........ 'u' ,,........ ,,........ Q

'@
 ::2

Q

,,........
~

"'O
(!)

'"":'>
........

........
.......

........ - -
........

........
- -

.......
0 o tf')

0 a 0 0
:,
0 0 ~

a.i
g

~ u
c..

I
0

0
gu

.9

.!3 ell

l
0 u

........
0 u tf')

~ 0 u

o 0 t.,
J

o 0 t.,
J

o 0 t.,
J

o 0 N

o 0 N

o 0 ~

~ O>
 ::::, O>

O>

0.
.

'"1

'O

O>

'"1

p,
 ..

9.
-

O>

-· ("
)

0
-

::::,

-·

~
0

_...
 :

:s

0.
.

0

00

......

0 ~

o 0
o 0 ~

o 0 N

o 0 N

o 0

o 0

o 0
.

o 0

r N

r N

1.
./l

N

Note: Describe any four Data Models

i. Key Characteristics (3M)
ii. Differentiate the database approach from traditional file processing systems.

(2M)
2 b) What are the data models in database system and explain with examples?

L2 COl SM

OR

2 a) Discuss the main characteristics of the database approach and how it differs
from traditional file systems. L2 COl 5 M

UNIT-I

PARTB

b) What is a Data model? L2, CO 1
c) List the design issues in ER diagrams. L2, CO 1
d) Define composite attribute. L2, CO 1
e) What is the purpose ofrelational algebra? L2, COI
f) What is the difference between drop and delete in SQL?

. U,COI
g) .Write about Attributes and its Types. L2, CO 1
h) What are the different problems caused ·by redundancy?

L2,COI
i) List the types of serializability. L2,CO I
j) Give an example for concurrency control validation.

L2,C01

L2, COI 1. a) List the role of database administrator.

Part-A contains 10 short answer questions. Each Question carries 2 Marks.

(Common for CSE, IT, AIML, DS)

PART A

II B.Tech-11 Semester-Regular Examinations -May, 2025

DATABASE MANAGEMENT SYSTEMS

Code:23CS3402,23AM3402,23DS3402,231T3402

(COMPUTER SCIENCE & ENGINEERING)
Scheme of Valuation

PVP23

P.V.P.SIDDHARTHA INSTITUTE OF TECHNOLOGY

i. Write SQL statement to create SQL tables with suitable integrity
constraints.(7M)

ii. Write SQL statement to retrieve the names of the students who works on more
than one project (3M)

i. Write SQL statement to create SQL tables with suitable integrity constraints.
ii. Write SQL statement to retrieve the names of the students who works on more than
one project L4 C04 10 M

6. Consider the following tables:
Student_Details (Reg no, Name, Address, Phone_No, Grade)
Project_Details (Project Code, Project_Name, Project_ Cost)
Student_Project (Reg_No, Project_ Code)

UNIT-III

i. An E-R diagram for a University Database(3M)
ii. identify the key entities and the relationships(2M)

5. Draw an E-R diagram for a University Database, identify the key entities and ·
the relationships between them L4 C04 10 M

. OR

i. Strong Entity Sets(2.5 M)
ii. Weak Entity Sets (2.5 M)

4 b) Explain Strong Entity Sets and Weak Entity Sets with examples.
. L3 C02 SM

i. Naming conventions (2.5 M)
ii. Notations(2.5 M)

4 a) Explain the naming conventions and notations used in ER diagram.
L3 C02. SM

UNIT-II

i. Difference between Two-tier and Three-tier architectures (3M)
ii. Importance of Web applications(2M)

3 b) Explain the difference between Two-tier and Three-tier architectures.
Which is better suited for Web applications? why? L2 COl 5 M

i. The three-schema architecture (3M)
ii. mappings between schema Jevels(2M)

3 a) Describe the three-schema architecture. Why do we need mappings between
schema levels? L2 · COl 5 M

11. b) Give a note on log based recovery. L2 COl 5 M
i. Definition and Types of Operations in the Log.(3M)
ii. Recovery Process (2M)

11 a) What is concurrency control? Explain two phase locking protocol with an
example. L2 COl 5 M ·

i. Definition about concurrency control (IM)
ii .. Two phase locking protocol with an example.(4M)

OR

10. Explain in detail about transaction management with an example.
. L2 COl lOM

i. Description about Transaction management with properties (8M)
ii. Example (2M)

UNIT-V

· 9.b) Write about loss-less join decomposition with an example. L3 C03 5 M
i. Description about loss-less join decomposition. (3M)
ii. Suitable Example (2M)

9 a) Describe the process of normalization in order to set the database to 3rd
normal forni. . L3 C03 s·M

. i. The process of normalization in order to set the database to 3rd normal
form. (3M)
ii.Followed Example (2M)

OR

i. Define about Normalization (IM)
ii. Need to normalize the database(4M)

8.b) Define normalization. Why do we need to normalize the database?
L3 C03 SM

UNIT-IV
8 a) Explain the process of decomposition using multivalued dependencies with

. suitable example. L3 C03 5 M
i. The process of decomposition using multivalued dependencies(3M)
ii. Suitable Example (2M)

i. Describe set operations(3M)
ii. Followed Examples (2M)

7 a) Enumerate various select and projection operations on relations with
relational algebra. L3 C02 5 M

i. Describe select and projection operations on relations with relational
algebra.(3M)

ii. . Examples (Provide one Example) (2M)
7.b) Discuss various setoperations in relational algebra with examples.

L3 C02 SM

OR

A composite attribute is an attribute that can be divided into smaller
subparts, each representing more basic attributes with independent
meanings.
Example:
Name can be a composite attribute:

Name - {First Name, Middle_Name, Last_Name}

2M L2, COi d) Define composite attribute.

Ans:
1. Use of Entity Sets vs. Attributes
ii. Use of Entity Sets vs. Relationship Sets
iii. Use of Binary vs. n-ary Relationships
iv. Placement of Relationship Attributes
v. Identifying Keys
vi. Participation Constraints

Note: Mention any 4 roles

2M L2, COi c) List the design issues in ER diagrams.

Ans: A data model is a conceptual framework used to organize and
define how data is stored, connected, processed, and accessed
within a database system.

2M L2, COi b) What is a Data model?

Part-A contains 10 short answer questions. Each Question carries 2 Marks.

1. a) List the role of database administrator. 2M L2, CO l

Ans: Key roles and responsibilities of a DBA:

1. Database Design
ii. Installation and Configuration
iii. Data Security and Access Control
iv. Performance Monitoring and Tuning
v. Backup and Recovery
vi. Data Integrity and Consistency

Note: Mention any 4 roles

(Common for CSE, IT, AIML, DS)

PART A

II B.Tech - II Semester- Regular Examinations - May, 2025

DATABASE MANAGEMENT SYSTEMS

Code:23CS3402,23.AM3402,23DS3402,231T3402

(COMPUTER SCIENCE & ENGINEERING)
Scheme of Valuation

PVP23

P.V.P.SIDDHARTHA INSTITUTE OF TECHNOLOGY

.,I 1· I 0

Ans: An attribute is a property or characteristic of an entity in a database. In
simple terms, an attribute represents a column in a table and holds information
about-an entity.
Types of Attributes:

1. Simple (Atomic) Attribute
o Example: Age, Salary, Student_ID

2. Composite Attribute
o Example: Name - {First Name, Last_Name} ·

3. Derived Attribute
o Example: Age can be derived from Date_of_Birth.

4. Multi-valued Attribute
o Example: Phone Numbers, Email_Addresses

5. Single-valued Attribute
o Example: Roll_Number, Gender

6. Key Attribute
o Example: Employee_ID in an employee table.

7. Stored Attribute
o Example: Date_of_Birth is stored;

h) What are the different problems caused by redundancy? 2M
L2,C01

· Problems Caused by Redundancy in Databases:
Data redundancy means the same piece of data is stored in multiple
places unnecessarily. It leads to several serious problems, especially in .
large or unnormalized databases.
i. Inconsistency
ii. Update Anomalies
iii. Insertion Anomalies
iv. Deletion Anomalies

L2,C01 g) Write about Attributes and its Types. 2M

I Feature II DELETE II DROP I
!Purpose

I Removes data (rows) from a Removes the entire object
table (table, view, etc.)

Effect on IITable structure remains
I Table structure is completely

Table removed . ,~~ I 0Yes (to delete specific rows) XNo (removes entire object)

lus~d On IIData (rows)
I Schemaobjects (tables,
views, indexes, etc.)

DELETE FROM employees DROP TABLE employees;
WHERE department= 'HR'; (Completely deletes the

Example (Deletes only rowsfrom employees table and all its
employees table where data) department is 'HR')

f) What is the difference between drop and delete in SQL? 2M· L2, COi
Ans:

e) What is the purpose of relational algebra? 2M L2, COl
Ans: Relational algebra is a formal query language used to
manipulate and retrieve data stored in relational databases.

I.

3.Write Phase (if Validation Passes):
- If no conflict, changes are applied:
Tl updates A to $400 and B to $400.
T2 (if retried) updates A to $450.

Optimistic Concurrency Control assumes conflicts are rare and checks only at
commit time.
Validation ensures serializability by aborting conflicting transactions.

2. Validation Phase (Conflict Check):
Before committing, each transaction checks if any conflicts occurred.
Conflict Rules:

- If two transactions wrote to the same data item, they conflict.
- If one transaction read data that another transaction wrote, they conflict.

-Here:
- Tl writes to A and B.
- T2 writes to A.
- Since both modify Account A, a conflict exists.

1. Read Phase:
Tl reads Account A (balance= $500) and Account B (balance= $300).
T2 reads Account A (balance= $500).

Steps in Optimistic Concurrency Control:

. Two transactions, Tl and T2 are executing concurrently on a banking database.
Tl transfers $100 from Account A to Account B.
T2 deposits $50 into Account A.

Example of Concurrency Control Validation (Optimistic Concurrency
Control)

Concurrency control validation is a technique used in database systems to
ensure that transactions are executed in a way that maintains consistency,
even 'when multiple transactions are running concurrently. One common
method is Optimistic Concurrency Control (OCC), which involves three
phases: Read, Validation, and Write.

Ans:

j) Give an example for concurrency control validation. 2M
12,COl

i. Conflict Serializability
ii. View Serializability

Ans:

i) List the types of serializability. 2M
12,COI

Ans: DataModel : A collection of concepts that can be used to
describe· the structure of a database- provides the necessary means
to achieve this abstraction. By structure of a database that is data
types, relationships, and constraints that apply to the data.
Examples:
Main categories of Data Models
i .. ER (Entity-Relationship) Model
The ER Model establishes the theoretical view of the database. It works
around the real-time entities and the relationships among them. In View
level, we consider ER models as the best option to design the databases.

2 .b) What are the data models in database system and explain with
examples? L2 COl 5 M

The database approach offers a more structured, secure, and efficient way to
· manage data compared to traditional file systems. it enables better scalability,
consistency, and ease of management, especially in multi-user environments.

I Feature II Traditional File System II Database Approach I

. !Data Redundancy I High (multiple copies in Low (centralized control
different files) avoids duplication)

!Data Integrity l!Hard to enforce IIEnforced using constraints I
Data Independence -. I High (schemas abstract

physical storage)
!security IIFile-level only IIFine-grained access control I
Concurrency Manual and error-prone Handled automatically by
Control DBMS
Backup and

!Manual. · I Built-in.recovery
Recovery mechanisms

!Data 'sharing I Difficult across programs Easy due to centralized
database·

Scalability and
!Limited I Efficient for large, multi-

Performance user systems

Ans: Characteristics of the Database Approach: -
The main characteristics of the database approach versus the file-processing
approach are the following:
O Self-describing nature of a database system.
O Insulation between programs and data, and data abstraction.
O Support of multiple views of the data.
O Sharing of data and multiuser transaction processing

2 a) Discuss the main characteristics of the database approach and how it
differs from traditional file systems L2 COl S_M

UNIT-I

PARTB

In this database model data is more related as more relationships are
established inthis database model. Also, as the data is more related,

Scudent_id student.Name Student.Age

01 VIJay 20

02 Ramesh 22

03 Rakesh 21

04 Va run 25

iv. Network Model

The relational model is the most common data model. It arranges the
data into the tables, and tables are also known as relations. Tables will
have columns and rows. Every column catalogs an attribute present in
the entity like zip code, price, etc.

iii. Relational Model

llloory La~•

lnlr"structure

This data model arranges the data in the form of a tree with one
root, to which other data is connected. The tree hierarchy begins
with the "Root" data, and extends like a tree, by inserting the child
nodes to the parent node. ·

ii. Hierarchical Model

I
u.w....-.~~N ~--~----~~-----~......:.-.......s..-J 1.

2.

Each external schema describes the part of the database that a particular user
group is interested in and hides the rest of the database from that user group.
Each external schema is typically implemented using a representational data
model.

The internal schema uses a physical data model and describes the
complete details of data storage and access paths for the database

~· The conceptual level has a conceptual schema, which describes the
structure of the whole database for a community of users.

The conceptual schema hides the details of physical storage structures and
concentrates on describing entities, data types, relationships, user operations,
and constraints .

. A representational data model is used to describe the conceptual schema when
a database system is implemented.

~ The external or view level includes a number of external schemas or
user views.

Three-schema architecture was proposed to help achieve and visualize
these characteristics
The goal of the three-schema architectureis to separate the user applications
from the physical database. In this architecture, schemas can be defined at
the following three levels:
~ The internal level has an internal schema, which describes the physical

storage structure of the database.

3 a) Describe the three-schema architecture. Why do we need mappings
between schema levels? L2 COl 5 M

OR

This was the most widely used database model, before Relational
Model was introduced.

hence accessing thedata is also easier and fast. This database model
was used to map many-to-many data relationships.

i. Data Abstraction
• Users do not need to know how data is stored or where it's stored.
• . Example: A user queries "SELECT Name FROM Student" without

knowing file paths or indexes.
ii. Data Independence

• Logical Data Independence: Change in conceptual schema does not
affect external views.

o e.g., Adding a new attribute to the Student entity shouldn't affect
applications using existing views.

• Physical Data Independence: Change in internal schema does not
affect the conceptual schema.

o e.g., Moving from heap file to B+ tree indexing shouldn't affect
the logical structure.

Mappings connect and translate data between these three levels. They serve
two major purposes:

Stored Database

Most DBMSs do not separate the three levels completely and explicitly,but
support the three-schema. architecture to some extent.
The three-level ANSI architecture has an important place in database
technology development because it clearly separates the users' external
level,the database's conceptual level,and the internal storage level for
desigriing a database.
Example: Universal Data Base (UDB), a DBMS from IBM, which uses the
relational model to describe the conceptual schema, but may use an object-

. oriented model to describe an external schema.
The DBMS must transform a request specified on an external schema into a
request against the conceptual schema, and then into a request on the internal
schema for processing over the stored database.
If the request is a database retrieval, the data extracted from the stored database
must be reformatted to match the user's external view. The processes of
transforming requests and results between levels are called mappings.

Internal Schema

Conceptual Schema Conceptual Level

Conceptual/Internal
Mapping

Internal Level

External Level

f End Users f
External External

View Vrew -. / External/Conceptual
Mapping

Two-Tier client/Server architecture for DBMS:
The architecture is called two-tier architectures because the software
components are distributed over two systems: client and server.
The query and transaction functionality related to SQL processing remained on
the server side. In such an architecture, the server is often called a query
server or transaction server because it provides these two functionalities. The
server is also often called an SQL server.
The user interface programs and application programs can run on the client
side. When DBMS access is required,the program establishes a connection to
the DBMS (which is on the server side); once the connection is created,the
client program can communicate with the DBMS.
A standard called Open Database Connectivity (ODBC) provides an
application programming interface (API), which allows client-side
programs to call the DBMS, as long as both client and server machines have
the necessary software installed.
Most DBMS vendors provide ODBC drivers for their systems. A client
program can actually connect to several RDBMSs and send query and
transaction requests using the ODBC API,which are then processed at the
server sites.
Any query results are sent back to the client program, which can process· and
display the results as needed. A related standard for the Java programming
language,called JDBC,has also been defined.
This allows Java client programs to access one or more DBMSs through a

. standard interface.
In one variation of client/server architecture, the server can be a data server
because if provides data in disk pages to the client. This data can then be
structured into objects for the client programs by the client-side DBMS
software.
The advantages of this architecture are its simplicity and seamless
compatibility with existing systems.
Three-tier client/server architecture for DBMS:
The emergence of the Web changed the roles of clients and servers,leading to

· the three-tier architec
ture ..
It adds an intermediate layer between the client and the database server.

3.b) Explain the difference between Two-tier and Three-tier architectures.
Which is better suited for Web applications? why? L2 COl 5 M ·

Better suited for web applications:
Three layers in the three tier architecture are as follows: 1) Client Iayer2)
Business layer3) Data layer. Three-tier architecture is better suited for web
applications .. 3-tier application architecture provides a model by which
developers can create flexible and reusable applications.
The best DBMS architecture for this Web-based system would be the three-tier
architecture for web applications. This is because in this architecture the client
is actually a GUI that the user interacts with. The data about the airline
reservations is held in a database that the web server that the GUI Jives on

This intermediate layer or middle tier is called the application server or the
Web server.This server plays an intermediary role by running application

. programs and storing business rules (procedures or constraints) that are used to
access data from the database server.
It can also improve database security by checking a client's credentials before
forwarding a request to the database server.
Clients contain GUI interfaces and some additional application-specific
business rules.
The intermediate server accepts requests from the client, processes the request
and sends database queries and commands to the database server, and then acts
as a conduit for passing (partially) processed data from the database server to
the clients, where it may be processed further and filtered to be presented to
users in GUI format.
Thus, the user interface, application rules, and data access act as the three tiers ..
In the above diagram part (b), the presentation layer displays information to
the user and allows data entry.
The business logic layer handles intermediate rules and constraints before data
is passed up to the user or down to the DBMS.
The bottom layer includes all data management services.

· The middle layer can also act as a Web server, which retrieves query results
from the database server and formats them into dynamic Web pages that are
viewed by the Web browser at the client side. It is also possible to design n-tier
architectures. Vendors of ERP (enterprise resource planning) and CRM
(customer relationship management) packages often use a middleware layer,
which accounts for the front-end modules (clients) communicating with a
number of back-end databases (servers)

(b)

I
Business l Logic Layer

l

Database
Services

Layer

l
Presentation

Layer

(a)

Database
Management

Systom

Database
Server Figure 2.7

Logical three-tier clienVserver
architecture, with a couple of
commonly used nomenclatures.

Application
Programs,

Web Pages

t
Applicatio11 Server

or
Web Server

t
GUI,

Web Interface Client

• Notation:

D. Cardinality (Relationship Constraints)

0

0

•

0

Diamond (e.g., Enrolls, Manages)

Lines connect entities (with cardinality marks).

Naming Rules:

Verb phrases (registers_for, ~orks_in).

Lowercase with underscores (has_ dependency).

0

•
•

0

0

•

0

0

0

0

•
•

0

0

•

0

0

•

An Entity-Relationship (ER) Diagram visually represents the data and
relationships in a database using a set of standard symbols and naming rules.
Naming Conventions
Entity-Relationship (ER) Diagram: Naming Conventions and Notations
ER diagrams are 'a visual representation of database structure,
showing entities, attributes, relationships, and constraints. Below are the
standard naming rules and notations used.
A. Entities (Tables)

Definition: Real-world objects (e.g., Student, Employee, Order) .
Notation:

Rectangle (Strong Entity)
Double Rectangle (Weak Entity- depends on another entity)

Naming Rules:
Use singular nouns (course, not Courses).
Capitalize (Employee, not employee).

B. Attributes (Columns)
Definition: Properties describing an entity (e.g., student_id, name) .
Notation:

Oval (Simple Attribute)
Double Oval (Multi-valued, e.g., phone_numbers)
Dashed Oval (Derived, e.g., age from birth date)

. Underlined (Primary Key)
Naming Rules:

Lowercase with underscores (order_date, not OrderDate).
Avoid spaces/special characters.

C. Relationships (Associations)
Definition: How entities interact (e.g., "Student enrolls in Course") .

Notation:

•

Naming Conventions and Notations in ER Diagrams

4 a) Explain the naming conventions and notations used in ER diagram.
L3 C02 SM

UNIT-II

interacts with. The web interface calls upon functions from the web server, but
the application logic and the GUI do not have to live on the same machine.

v' Entities: Singular & capitalized (Employee, not Employees).

v' Relationships: Verb-based (manages, registers_for).

v' Attributes: Lowercase, underscores (birth_date, not BirthDate).

v' Primary Keys: Use _id suffix (emp l oyee ji d, order_id).

XAvoid: Spaces (order date -t order_date), SQL keywords

(user -t app user).

3. Best Practices for Naming

• Entities: Student, Course

• Attributes: stud.ent_id, course_id, enrollment_date

• Relationship: Enrolls (Many-to-Many)

enrollment date

i--'f----,
I Enrolls I (M:N)

course id (PK) student id (PK)

Course Student

2. Example ER Diagram

or N (many)

o M:N (Many-to-Many) -t Crow's Foot on both sides

• Participation Constraints:

o Single Line (Partial Participation) --+- Optional

o Double Line (Total Participationj=-s Mandatory

0

1:1 (One-to-One) - I or 1

1:N (One-to-Many)--+- I (one) and Crow's Foot(~)

0

I
S!l{l UJ ";:)dAl

d!ljSUO!l"Bl;:)J e JO 'omquua ue ';:)dAl Al!lU;:) ue SB pg[;:)pOw aq pjnoqs PJJOM.!U!W
;:)ljl UI ld;:)JUO:> J"B[n:>!UBd B ldljldljM ::lp!:>;)p oi lJ116!.JJ!P All"BUO!SB:>:>O S! H

;,1nq!'ll\f pantY"!l("Vj ~

•in'l!'nV ,fa>t ~

01nq!'II\I C>-
d!4suo9e1a!J 6U!Al!IUapu1 0

I d!4S'JO!l'Cia!J 0
.(J!IU3~HM ,,

11

'SW'CJfil:!I) !:l3 JOj
i19u3

uo~e1ou IILfl jO NVWwns
tl"£a.inllr:, 8u1un1111 1oqw.<s

cf U.! :J jO UO!llldp!µed UO
(~UJ 'U!Ul) IU!C.lliUo:) lllJnpnJlS

\

Structural Constrain1 (min, max]
on Pariicipation of E in R

Cardinafity Ratio 1 : N for £1 :£2 in R E,

Total Participation of £2 in R

Derived Attribute
.. ~-- .. ._.

Composite Attnbute

Symbol Meaning Flgure7.14
Summa,y of the notation

Entity for ER diagrams.

11 11 Weak Entity

0 Relationship

0 lndenlifying Relationship

----<=:> Attribute

~ Key Attnbute

-0 Multivalued Attribute

Design Choices for ER Conceptual Design

It is occasionally difficult to decide whether a particular concept in the
miniworld should be modeled as an entity type, an attribute, or a relationship
type. In this

OR

Strong Entity

Weak Entity

Weak Entity
A weak entity is dependent on a strong entity to ensure its existence. Unlike a
strong entity, a weak entity does not have any primary key. It instead has a
partial discriminator key. A weak entitv is represented by a double
rectangle. The relation between one strong and one weak entity is represented
by a double diamond. This relationship is also known as an identifying
relationship.

Strong Entity
A strong entity is not dependent on any other entity in the schema. A strong
entity will always have a primary key. Strong entities are represented by a
single rectangle. The relationship of two strong entities is represented by a
single diamond. Various strong entities, when combined together, create a
strong entity set.

4. b) Explain Strong Entity Sets and Weak Entity Sets with examples.
L3 C02 SM

Key Entities:
1. Student

. o Attributes: Rol!No (Primary Key), Name, Department
2. Course

o Attributes: CourseID (assumed), Name
3. Instructor

o Attributes: InstructorlD (Primary Key), Name
4. Department

o Attributes: DeptID (Primary Key), DeptName
Relationships:

I. Enrolls
o Between Student and Course
o Represents which students are enrolled in which courses.

2. Offers
o Between Instructor and Course
o Indicates which instructor offers which course.

3. Teaches
o Between Department and Instructor
o Shows that instructors are associated with a department.

• The diagram uses standard ER notation: rectangles for entities,
diamonds for relationships, ellipses for attributes, and underlined
attributes for keys.

• Total or partial participation and cardinality can be added if more
constraints are needed.

Department
r---/.

Course

E-R diagram for a University Database:

5. Draw an E-R diagram for a University Database, identify the key
entities and the relationships between them L4 C04 10 M

OR

• The query joins Student_Details with Student_Project.
• It groups by Reg_no and Name.
• The HAVING clause filters students with a project count greater than 1.

SELECT SD.Name
FROM Student Details SD

. JOIN Student_Project SP ON SD.Reg_no = SP.Reg_no
GROUP BY SD.Reg_no, SD.Name
HAVING COUNT(SP.Project_Code) > l;

ii. SQL Query to Retrieve Names of Students Working on More Than One·
Project

CREATE TABLE Student_Project (Reg_no INT, Project_Code INT,
PRIMARY KEY (Reg_no, Project_Code), FOREIGN KEY (Reg_no)
REFERENCES Student_Details(Reg_no), FOREIGN KEY
(Project_ Code) REFERENCES Project_Details(Project_ Code));

3. Create StudentProject Table (junction table for many-to-many
relationship) ·

CREATE TABLE Project_Details (Project_Code INT PRIMARY KEY,
· Project_Name VARCHAR(lOO) NOT NULL, Project_Cost
DECIMAL(lO, 2));

2.Create Project_Details Table

CREATE TABLE Student_Details (Reg_no INT PRIMARY KEY, Name
V ARCHAR(lOO) NOT NULL, Address V ARCHAR(255), Phone No . -
V ARCHAR(lS), Grade CHAR(l));

1. Create Student Details Table

i. SQL Statements to Create Tables with Integrity Constraints

i. Write SQL statement to create SQL tables with suitable integrity constraints.
ii. Write SQL statement to retrieve the names of the students who works on
more than one project L4 C04 10 M

6. Consider the following tables:
Student Details (Reg no, Name, Address, Phone_No, Grade)
Project_Details (Project Code, Project_Name, Project_Cost)

. Student Project (Reg_No, Project_ Code)

UNIT-ID

Combined Example:

1t Project_Name, Project_Cost (Project_Details)

2. Get all unique project names and their costs

1t Name (Student_Details)

I. List all student names

Examples:

1t<attribute_list>(Relation)

Notation:

Retrieves columns (attributes) from a relation.

Purpose:

2. Projection Operation (1t)

er ProjecrCost > 50000 (Project_Details)

2. Select projects with cost > 50000

er Grade= 'A' (Student Details)

1. Select students with Grade 'A'

Examples:

er<condition>(Relation)

Notation:

Retrieves rows (tuples) from a relation that satisfy a given predicate
(condition).

Purpose:

1. Select Operation (er)

Relational algebra provides a formal foundation for querying relational
databases, Two fundamental operations are:

Select and Projection Operations in Relational Algebra

7 a) Enumerate various select and projection operations on relations with
relational algebra. L3 C02 5 M

EmployeeID Name Department
201 David HR
202 Eve Engineering
103 Charlie HR

Contractor Table:

EmployeeID Name Department
101 Alice HR
102 Bob Engineering
103 Charlie HR

. Employee Table:

Consider twotables: Employee and Contractor .

Example:

• RlUR2

Syntax:

The union operation combines the tuples (rows) from two relations (tables),
. but only includes distinct tuples. It requires that the two relations being
unioned must have the same arity (i.e., the same number of columns) and
compatible domains (i.e., the data types of corresponding columns must be the
same).

i. Union (U)

Relational algebra provides a set of operations that are fundamental for
querying relational databases. Set theory operations-such as union,
intersection, and difference--are commonly used to combine or compare sets
of data. These operations are powerful tools to perform complex queries in a
relational database, especially when dealing with multiple relations (tables) and
performing operations like finding common data, excluding data, or combining
results.

Set Operations in Relational Algebra

7.b) Discuss various set operations in relational algebra with examples.
L3 C02 SM

1t Name (o Grade= 'A' (Student_Details))

List names of students with Grade = 'A'

EmployeeID Name Department
103 Charlie HR

Result:

Query (Intersection):
sql

· SELECT EmployeeID, Name, Department FROM Employee
INTERSECT
SELECT EmployeeID, Name, Department FROM Contractor;

Example:
Let's use the. same Employee and Contractor tables. We want to find all
individuals who are both full-time employees and contractors (i.e., they appear
in both the Employee and Contractor tables).

• RlnR2

Syntax:

The intersection operation returns the set of tuples that are present in both
relations. Like the union operation, the relations involved must have the same
number of columns and compatible domains.

· ii. Intersection (n)

The UNION operation returns a combined list of employees and contractors,
· removing any duplicates (in this case, Charlie appears in both tables but only

once in the result).

EmployeeID Name Department
101 Alice HR
102 Bob Engineering
103 Charlie HR
201 David HR
202 Eve Engineering

Result:

SELECT EmployeeID, Name, Department FROM Employee
UNION

· SELECT EmployeeID, Name, Department FROM Contractor;

Query (Union):
sql

We want· to find all the distinct employees (whether full-time or contractors)
from both tables.

More formally, for a relation R, a multi-valued dependency between attributes
· X and Y is denoted as X -- Y if:

A multi-valued dependency (MVD) occurs in a relational database when
one attribute (or a set of attributes) determines a set of values for another
attribute, but the values in the determined set are independent of each
other.

Multi-Valued Dependency (MVD)

8 a) Explain the process of decomposition using multivalued dependencies
with suitable example. L3 C03 5 M

UNIT-IV

The MINUS operation returns the set of tuples that are in the Employee table but
not in the Contractor table. Alice and Bob are full-time employees, but not

. contractors, so they appear in the result.

EmployeeID Name Department
101 Alice HR
102 Bob Engineering

Result:

Query (Difference):
sq!
SELECT EmployeeID, Name, Department FROM Employee
MINUS
SELECT EmployeeID, Name, Department FROM Contractor;

Let's use the same tables, but this time, we want to find employees who are not
contractors. This can be achieved using the difference operation.

Example:

• Rl-R2

Syntax: ·

The difference operation returns the set of tuples that are in the first relation
but not in the second. Like the union and intersection operations, the relations
involved must have the same number of columns and compatible domains.

iii. Difference (-)

· The INTERSECT operation returns only the tuple for Charlie, as he appears in
both the Employee and Contractor tables.

Decomposing to Achieve 4NF
To bring a relation into 4NF, we need to decompose the relation into multiple
smaller relations such that each multi-valued dependency is handled in a
separate table, ensuring that each combination of multi-valued attributes is
stored independently without repetition.

. In other words, 4NF requires that if there is a multi-valued dependency, the
relation must be decomposed into smaller relations so that each multi-valued
dependency is represented separately. This eliminates the redundancy caused
by the independent values for attributes that are multi-valued.

• · It is in Boyce-Codd Normal Form (BCNF).
• It has no multi-valued dependencies .

Fourth Normal Form (4NF) is designed to eliminate multi-valued
dependencies that cause redundancy in a relational database. A table is in 4NF
if: .

4NF Resolves Multi-Valued Dependencies

This redundancy results in wasted storage space and can make the database
difficult to maintain because updating one value requires updating multiple
rows.

Here, StudentID .-.- Skill and StudentID .-.- Language are both multi
valued dependencies. A single StudentID can have multiple values for both

· Skill and Language independently, leading to repetition of the StudentID in
multiple rows.

lstudeotIDllskill IILanguagel
It IIProgramming llspanish I
It IIProgramming IIFrench
11 IIData Analysisllspanish
11 IIData AnalysisllFrench
12 IIProgramming IIEnglish
12 IIData Analysisl!German

Con,sider a table that contains information about students, their skills, and their
languages.

. Example of Multi-Valued Dependency:

In essence, X .-.- Y means that if two rows have the same value for X, then
the values for Y are independent of each other, and each combination of X and
Y can appear in multiple rows without causing any inconsistency .

• For each value of X, the corresponding values of Y are fully
determined, but the values in Y do not depend on each other.

• The values of Y. are independent from each other, meaning that the
combination ofX and Y does not imply any further dependency.

It involves dividing large tables into smaller, related tables and defining
relationships between them using primary keys and foreign keys.

• Organize data efficiently,
• Eliminate data redundancy (duplicate data),
• And reduce undesirable characteristics like insertion, update, and

deletion anomalies.

Normalization is a systematic process in database design used to:

Definition: Normalization

8.b) Define normalization. Why do we need to normalize the database?
L3 C03 SM

· Now, the multi-valued dependency is handled correctly. Each table stores
independent sets of values, and there is no unnecessary redundancy. If we need
to update the language or skill of a student, we only need to update one row in

. the respective table, which improves data integrity and reduces redundancy.
Multi-valued dependencies can lead to redundancy in a database by causing
repeated data for combinations of attributes. Fourth Normal Form (4NF)
addresses this by decomposing tables in such a way that multi-valued
dependencies are eliminated, thus improving data integrity, reducing
redundancy, and enhancing the overall efficiency of the database schema.

lstudentIDJILanguageJ
11 JI Spanish I
11 JIFrench I
12 JJEnglish I
12 JJGerman I

Languages Table:

lstudentIDJISkill I
11 JIProgramming J

· 11 JIData AnalysisJ
12 JIProgramrning J
12 J!Data AnalysisJ

Skills Table:

Decomposition to 4NF: ·

In our example, the studentID determines multiple Skills and multiple
Languages. To normalize this into 4NF, we would decompose the table into
two relations:

1. A table for Skills associated with a student ID.
2. A_table for Languages associated with a student ID.

· Here:

IEmployeeIDIIDepartmentIDIIDepartmentNamellManagerNamel
11 11001 IIHR IIMr. White I
12 11002 IIFinance IIMs. Black I

Consider 'a table with information about employees, their departments, and the
department managers.

Example of 3NF:

• It is in Second Normal Form (2NF).
• It bas no transitive dependencies: A transitive dependency occurs

when a non-prime attribute depends on another non-prime attribute
through a third attribute. In other words, if A _. B and B -- c, then A _.

c is a transitive dependency, and the schema is not in 3NF.

A database schema is in Third Normal Form (3NF) if it meets the following
criteria:

Criteria for Third Normal Form (3NF)

9 a) Describe the process of normalization in order to set the database to
3rd normal form. L3 C03 5 M

OR

· Why Do We Need to Normalize the Database?
1. Eliminate Redundancy

• Repeated data wastes storage and leads to inconsistency.
• Normalization ensures that each piece of data is stored only once.

2. Prevent Anomalies
• Insertion anomaly: Can't add data because other required data is

missing.
• Update anomaly: Need to update data in multiple places.
• Deletion anomaly: Deleting one piece of data may delete unintended

information.
3. Improve Data Integrity

• Ensures that relationships between data are logically sound.
• Enforces rules through constraints and keys .

. 4. Maintain Consistency
• Changes made in one place reflect correctly throughout the database.

5. Efficient Data Organization
• Small, well-structured tables make querying, updating, and indexing

more efficient.
Normalization is essential to ensure:

• Data is logically stored
• Redundancy is minimized
• Anomalies are prevented
• Database is easy to maintain and scale

Functional Dependencies (FDs):

EmpID EmpName Dept ProjectID ProjectName

EOOI Alice HR PIOO 'Payroll

E002 Bob IT P200 Database

E003 Carol Finance PlOO Pa)'.roll

Original Table (R): Employee_Project

Example of Lossless Join Decomposition

Lossless Join Decomposition
If we decompose a relation R into relations RI and R2,

A lossless join decomposition (also called non-loss decomposition) ensures
that if a relation R is decomposed into two or more relations Rl, R2, ... , then we
can reconstruct the original relation R without losing any data by
performing a natural join on the decomposed relations.

9.b) Write about loss-less join decomposition with an example.
L3 C03 SM

indirectly via DepartmentName.

Now, there are no
transitive dependencies,
as ManagerName
depends directly on
DepartmentID and not

IDepartmentIDIIDepartmentNamellManagerNamej
.1001 IIHR l!Mr. White I

1002 !!Finance l!Ms. Black I

2. · Department Table:

!Em eioye~IDIIDeea rt men t1DI
11 11001 I
12 11002 I

I. Employee Table:

To bring this schema into 3NF, we decompose it into two tables:

• DepartmentName and ManagerName are functionally dependent on
DepartmentID.

• ManagerName is dependent on DepartmentName, creating a
transitive dependency because DepartmentName is dependent on
DepartmentID, and ManagerName is dependent on
DepartmentName.

1. Common Attribute: EmpTD (present in both R1 and R2).

2. Check if EmpTD is a superkey in either R1 or R2:
o In R1, EmpTD is a primary key (unique).

o Hence, R1 n Rs - R1 holds.
Natural Join Result:
Employee t><l Project_ Assigmnent

Output: Original table EmployeeProject is perfectly reconstructed.
• Lossless decomposition ensures no data loss when reconstructing

the original table.
• The intersection of decomposed tables must be a superkey in at least

one table.

Verification of Lossless Join:

EmpID ProjectID ProjectNamc

EOOI PlOO Payroll

E002 P200 Database

E003 PlOO Payroll

Rs: Project_Assignment (Lossless because (EmpID, ProjectlD) isa key)

lEmplD EmpName Dept

EOOl Alice HR

E002 Bob IT

E003 Carol Finance

R,: Employee (Lossless because EmplD is a key)

. Decomposition into R, and Rs:

1. EmpTD - EmpNarne, Dept

2. . ProjectTD - ProjectName

3. EmpTD, ProjectTD - EmpName, Dept, ProjectName

COMMIT;
Explanation:

• Deducts ~ I 000 from Account A
• Adds ~1000 to Account B
• Both actions must succeed together to maintain correctness

If system fails after first UPDATE:
• Without transaction management-+ A loses tl 000, B gets nothing-+

XInconsistent
• With transaction management-+ Whole transaction is rolled back -e

0Database remains consistent
Components of Transaction Management System:

UPDATE Accounts SET Balance = Balance - 1000 WHERE AccountID = 'A';
UPDATE Accounts SET Balance= Balance + 1000 WHERE AccountlD = 'B';

D bility Once a transaction is committed, changes are permanent, even
ura 1 1 after a crash.

Transaction States:
1. Active - Transaction is executing.
2. Partially Committed - Last statement executed, waiting for commit.
3. Committed - Changes permanently saved.
4. Failed - Error occurred during execution.
5. Aborted - Changes undone; transaction rolled back.

Example of Transaction: Bank Transfer
Scenario: Transfer ~1000 from Account A to Account B
SQL Transaction:
BEGIN TRANSACTION;

Concurrent transactions are isolated from each other. Isolation

C . t A transaction preserves database consistency (e.g., referential
onsis ency . t ity) me~. .

A transaction is indivisible. If one part fails, the entire transaction
fails. Atomicity

Description

Why Transaction Management is Important:
• Ensures data correctness even in the presence of system crashes or

concurrent users.
• Prevents problems such as data inconsistency, lost updates, dirty

reads, and phantom reads.
• Guarantees that the database moves from one consistent state to

another.
ACID Properties of Transactions:

Property

A transaction is a sequence of operations performed as a single logical unit
of work on a database. These operations must either all succeed or all fail, to
maintain the integrity and consistency of the database.

L2 COl lOM

10. Explain in detail about transaction management with an example.

UNIT-V

Two-Phase Locking (2PL) Protocol
Definition:
The Two-Phase Locking protocol (2PL) is a popular concurrency control
technique that ensures serializability by dividing the transaction execution into
two distinct phases:
Phases of 2PL:

1. Growing Phase:
o A transaction may acquire locks (read/write).

. o It cannot release any locks.
2. Shrinking Phase:

o A transaction may release locks.
o It cannot acquire any new locks.

Once a transaction releases its first lock, it cannot obtain any new locks.

. Concurrency Control is a mechanism in a Database Management System
(DBMS) that ensures correct and consistent execution of multiple
simultaneous transactions without interfering with each other. It helps
maintain isolation, one of the key ACID properties.

11 a) What is concurrency control? Explain two phase locking protocol
with an example. L2 COl 5 M

OR

Concurrency Control Techniques:
• Locks (2PL) - Prevents simultaneous access to data
• Timestamps - Orders transactions logically
• Optimistic Control- Validates transactions before commit

Recovery Techniques:
• Undo - Rollback changes made by a failed transaction
• Redo - Reapply changes made by a committed transaction
• Shadow Paging - Maintains a shadow copy of data pages

Transaction management is essential for:
• Preserving data integrity
• Supporting concurrent access
• Ensuring reliability and recovery
• Providing safe execution of complex database operations

Log Manager

Role
Controls execution of transactions
Manages concurrent transaction execution (e.g.,
2PL) .
Ensures durability using logs and checkpoints
Maintains logs for rollback or redo in case of
failure

Component
Transaction Manager
Concurrency Control
Manager
Recovery Manager

• Transaction start
• Before and after values of updates
• Commit or abort information

A log is a sequential record of all the operations performed by transactions. It
is stored on stable storage and includes:

What is a Log?

Log-based recovery is a technique used in DBMS to ensure that the database
can be restored to a consistent state after a system crash or failure. It uses a
log file to record all changes made to the database.

Definition:

L2 COl SM 11 b) Give a note on log based recovery.

Exclusive Lock (X) For writing (only one holder)
Advantages of 2PL:

• Guarantees conflict-serializability
• Prevents many concurrency issues

Disadvantages:
• May cause deadlocks (when two transactions wait for each other's

locks}
Concurrency Control, especially via the Two-Phase Locking protocol, is
vital for:

• Ensuring correctness
• A voiding anomalies
• Maintaining transaction isolation

Purpose
For reading (multiple can hold it)

t4 T2 acquires lock on A
t5 T2 writes A
t6 T2 releases lock on A
v O Transactions follow 2PL
VO Serializability is preserved
Types of Locks Used:

Lock Type
Shared Lock (S)

Example:
Transactions:

• Tl: Reads A and writes A
• T2: Reads A and writes A

Assume both need exclusive (write) lock on A.
Scenario with 2PL:
Time Action
tl Tl acquires lock on A
t2 Tl writes A
t3 Tl releases lock on A (begin shrinking phase)

Log-based recovery is a robust and reliable mechanism that plays a vital role
in maintaining data integrity and recoverability in a DBMS by using logs to
undo or redo transactions depending on their commit status.

Recovery Process:
Two major phases during recovery:
1. Undo (Rollback):

• For all uncommitted transactions
• Database is rolled back to the old value
• Uses old value from log

2. Redo (Reapply):
• For all committed transactions
• Ensures all effects are reflected in the database
• Uses new_ value from log

I Operation II Descri12tion I
!<START Ti> IITransaction Ti has started I
l<Ti, X, old, new>IIUpdate operation on X by Ti I
!<COMMIT Ti> IITransaction Ti successfully committed!
l<ABORTTi> IITransaction Ti was aborted I

Types of Operations in the Log:

• Ti is the transaction ID
• x is the data item being modified
• old_ value is the value before the update
• new_ value is the value after the update

Where:

<Ti, X, old_value, new value>

Typical Log Entry Format:

