II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

THERMODYNAMICS (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

Г

CO – Course Outcome

Max. Marks: 70

		BL	CO
1.a)	Define System and process.		CO1
1.b)	State difference between macroscopic and	L1	CO1
	microscopic viewpoints.		
1.c)	State the Zeroth Law of Thermodynamics.	L1	CO2
1.d)	Define enthalpy in thermodynamics.		CO2
1.e)	State the Kelvin-Planck statement of the Second		CO3
	Law of Thermodynamics.		
1.f)	Define entropy in thermodynamics.		CO3
1.g)	Give an example of a phase transformation		CO4
	process.		
1.h)	State the Clausius-Clapeyron equation.		CO4
1.i)	What is the main difference between the Otto	L2	CO5
	cycle and the Diesel cycle?		
1.j)	Define the Coefficient of Performance (COP) in	L1	CO5
-	refrigeration systems.		

PART – A

PART - B

			BL	CO	Max. Marks		
	UNIT-I						
2	a)	Explain about Quasi static process.	L2	CO1	5 M		
	b)	A mass of 2.5 kg of air is compressed in	L2	CO1	5 M		
		a quasi-static process from 0.1 MPa to					
		0.7 MPa for which PV Constant. The					
		initial volume is 0.8 m ³ /kg. Find the work					
		done by the piston to compress the air.					
		OR					
3	a)	Explain about thermodynamic	L2	CO1	5 M		
		equilibrium.					
	b)	The temperature t on a thermometric	L3	CO1	5 M		
		scale is defined in terms of a property K					
		by the relation					
		$t = a \ln K + b$					
		Where a and b are constants.					
		The values of K are found to be 1.83 and					
		6.78 at the ice point and the steam point,					
		the temperatures of which are assigned					
		the numbers 0 and 100 respectively.					
		Determine the temperature corresponding					
		to a reading of K equal to 2.42 on the					
		thermometer.					
	UNIT-II						
4	3Kg	g of air at a pressure of 150KPa and	L3	CO2	10 M		
	temperature 360K is compressed						
	polytropically to 750KPa according to law						
	$PV^{1,2}=C$. The gas is then cooled to initial						
	tem	perature at constant pressure. The air is					
	then expanded at constant temperature till it						

	read	ches original pressure of 150KPa. Draw			
	the	cycle on P-V diagram and determine the			
	net	work and heat transfer.			
		OR			
5	a)	Explain the Steady Flow Energy	L2	CO2	5 M
		Equation and its application in analyzing			
		steady-state flow processes.			
	b)	A Centrifugal pump delivers 50kg of	L3	CO2	5 M
		water per second. The inlet and outlet			
		pressures are 1 bar and 4.2 bar			
		respectively. The suction is 2.2m below			
		the center of the pump and delivery is			
		8.5m above the center of the pump. The			
		suction and delivery pipe diameters are			
		20cm and 10cm receptively. Determine			
		the capacity of electric motor to run the			
		pump.			
UNIT-III					
6	Α	heat engine operates between two	L3	CO3	10 M
6	A rese	heat engine operates between two ervoirs at temperatures of 500 K and 300	L3	CO3	10 M
6	A rese K.	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from	L3	CO3	10 M
6	A rese K. the	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency	L3	CO3	10 M
6	A rese K. the of	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat	L3	CO3	10 M
6	A rese K. the of reje	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the	L3	CO3	10 M
6	A rese K. the of reje effi	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and	L3	CO3	10 M
6	A rese K. the of reje effi Cla	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements.	L3	CO3	10 M
6	A rese K. the of reje effi Cla	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements.	L3	CO3	10 M
6	A rese K. the of reje effi Cla	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements. OR	L3 L2	CO3	10 M 10 M
6	A rese K. the of reje effi Cla Des dist	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements. OR scribe the Carnot cycle and explain its four inct processes. Discuss the significance of	L3 L2	CO3	10 M 10 M
6	A rese K. the of reje effi Cla Des dist	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements. OR scribe the Carnot cycle and explain its four inct processes. Discuss the significance of Carnot cycle in thermodynamics and why	L3 L2	CO3	10 M 10 M
6	A rese K. the of reje effi Cla Des dist the it is	heat engine operates between two ervoirs at temperatures of 500 K and 300 The engine absorbs 600 kJ of heat from hot reservoir. Calculate: a) The efficiency the heat engine. b) The amount of heat ected to the cold reservoir. Discuss how the ciency relates to the Kelvin-Planck and usius statements. OR scribe the Carnot cycle and explain its four inct processes. Discuss the significance of Carnot cycle in thermodynamics and why considered the most efficient cycle.	L3 L2	CO3	10 M 10 M

UNIT-IV							
8	a)	Steam pressure is 10 bar, Calculate the	L3	CO4	5 M		
		Enthalpy and Entropy of the Steam.					
		i) If the Steam is dry.					
		ii) If the Steam is 90% dry.					
	b)	Briefly explain the P-V-T diagram.	L2	CO4	5 M		
	OR						
9	a)	A substance undergoes a phase	L3	CO4	5 M		
		transformation from liquid to vapor at a					
		constant pressure. At this pressure, the					
		boiling point is 100°C. The critical					
		temperature of the substance is 150°C.					
		Calculate the heat.					
	b)	Using a Mollier chart, determine the	L3	CO4	5 M		
		following for steam at 4 bar:					
		i. Specific enthalpy (h)					
		ii. Specific entropy (s)					
		iii. Quality (dryness fraction) if the					
		steam is in the saturated state.					
UNIT-V							
10	Co	mpare and contrast the Otto, Diesel and	L2	CO5	10 M		
	Dua	al Combustion cycles in terms of their					
	the	rmodynamic processes, P-V and T-S					
	dia	grams and thermal efficiency.					
OR							
11	Exp	plain the working of the Vapor	L2	CO5	10 M		
	Co	mpression Refrigeration (VCR) system					
	wit	h the help of a labeled diagram. Discuss					
	the	factors affecting the Coefficient of					
	Per	formance (COP) and how different					
	refr	rigerants impact system performance.					