Code: 23BS1303

II B.Tech - I Semester – Regular Examinations - DECEMBER 2024 NUMERICAL METHODS AND TRANSFORM **TECHNIQUES** (MECHANICAL ENGINEERING)

Duration: 3 hours	Max. Marks: 7	0
Notes 1 This mostion non-nontrive true Dents A and D		

- Note: 1. This question paper contains two Parts A and B.
 - 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 - 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 - 4. All parts of Question paper must be answered in one place. CO – Course Outcome
- BL Blooms Level

PART - A

r ARI – A							
		BL	CO				
1.a)	If the first two approximations x_0 and x_1 are roots	L2	CO1				
	of $x^3 - x - 4 = 0$ are 1 and 2, then find x_3 by						
	bisection method.						
1.b)	Write the Lagrange's interpolation formula for	L2	CO1				
	$\mathbf{y} = \mathbf{f}(\mathbf{x}).$						
1.c)	Write first and second order derivatives using	L2	CO1				
	Newton's forward ward difference formula at						
	$x = x_0$.						
1.d)	Write boole's rule.	L2	CO1				
1.e)	Write the formula for Picard's method of	L2	CO1				
	successive approximation.						
1.f)	Explain Euler's method.	L2	CO1				
1.g)	Find the Laplace transform of $e^{2t}(\cos^2 t)$.	L3	CO3				
1.h)	Find the inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$	L3	CO3				
1.i)	If $f(x) = sinx$ in $(-\pi, \pi)$, then find b_1 .	L2	CO1				
1.j)	Find the Fourier sine transform of $f(x) = e^{-x}$.	L2	CO1				

PART - B

												r	r
											BL	CO	Max. Marks
UNIT-I													
2	a)		- 2x	c — 5	$\delta = 0$	by t	of the n decim	nethod	l of	ation false	L3	CO2	5 M
	b) Using Newton-Raphson method, find the real root of $x log_{10}x = 1.2$ correct to five decimal places.										L3	CO2	5 M
	L						OR						
3	Find form	•	for	• `	lata.	sing 1	Γ		•	lation	L4	CO4	10 M
		x: y:	3 4.8	4	5	6 23.6	7 36.2	8 52.8	9 73.9	-			
		у.	7.0	0.7	17.5	23.0	50.2	52.0	13.7				
	UNIT-II												
4	Give	n th	at								L4	CO4	10 M
x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031 Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = 1.6$.													
	OR												
5	5 Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using								L3	CO2	10 M		
(i)Trapezoidal rule (ii) Simpson's $1/3$ rule									ıle				
(iii) Simpson's 3/8 rule (iv) Weddle's rule.													

		UNIT-III											
6	a)	Using Euler's method solve for y at $x = 0.1$	L3	CO2	5 M								
		from $\frac{dy}{dx} = x + y + xy, y(0) = 1$, taking step											
		size $h = 0.025$.											
	b)	Using Runge-Kutta method of fourth, solve	L3	CO2	5 M								
		$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ with } y(0) = 1 \text{ at } x = 0.2.$											
	OR												
7		ng Taylor's series method, find y at	L3	CO2	10 M								
	<i>x</i> =	0.1, 0.2, 0.3 given that $\frac{dy}{dx} = xy + y^2$, $y(0) = 1$.											
		tinue the solution at $x = 0.4$ using Milne's											
	meth	nod.											
		UNIT-IV											
8	a)	Find the Laplace transform of	L3	CO3	5 M								
		$f(t) = \begin{cases} 1, & 0 \le t \le 1\\ t, 1 < t \le 2\\ 0, & t > 2 \end{cases}$											
	b)	Using unit step function, find the Laplace	L3	CO3	5 M								
			20	000									
		transform of $f(t) = \begin{cases} sint, & 0 \le t < \pi \\ sin 2t, & \pi \le t < 2\pi \\ sin 3t, & t \ge 2\pi \end{cases}$											
OR													

9	a)	Find inverse Laplace transform	L3	CO3	5 M
		$of\frac{2s^2 - 6s + 5}{(s^3 - 6s^2 + 11s - 6)}.$			
	b)	Find the inverse Laplace transform of $\frac{1}{s(s+a)^3}$.	L3	CO3	5 M
		UNIT-V			
10	a)	Obtain the Fourier series of the function	L4	CO5	5 M
		$f(x) = \begin{cases} \pi x, & \text{if } 0 \le x \le 1\\ \pi(2-x), & 1 \le x < 2 \end{cases}$			
	b)	Find the half-range cosine series expansion of	L4	CO5	5 M
		$f(x) = x^2$ in the range $0 \le x \le \pi$.			
11	a)	Using the Fourier integral representation,	L4	CO5	5 M
		show that $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x} (x > x)$			
		0).			
	b)	Find the Fourier transform of $e^{-a^2x^2}$, $a < 0$.	L4	CO5	5 M
		Hence deduce that $e^{-\frac{x^2}{2}}$ is self reciprocal in			
		respect of Fourier transform.			