II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

ELECTROMAGNETIC FIELD THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

		BL	CO
1.a)	Define Electric Flux?	L1	CO1
1.b)	State Coulomb's law.	L1	CO1
1.c)	Discuss Electric dipole moment.	L2	CO2
1.d)	Explain polarization. Is polarization present in conductors?	L2	CO2
1.e)	What is meant by boundary condition? How they are useful?	L2	CO3
1.f)	Classify the fundamental difference between static electric and magnetic field lines?	L2	CO3
1.g)	Indicate the expression for Lorentz force equation and write its significance.	L2	CO4
1.h)	Define mutual inductance.	L1	CO4
1.i)	Cite the integral and point forms of Faraday's laws.	L2	CO5
1.j)	Define Poynting vector.	L1	CO5

$\mathbf{PART} - \mathbf{A}$

Max. Marks: 70

BL – Blooms Level CO – Course Outcome

PART – B

				1			
			BL	CO	Max.		
					Marks		
	UNIT-I						
2	a)	Illustrate the electric field intensity due to	L4	CO1	5 M		
		infinite line charge, at a point					
		perpendicular to its plane and at a given					
		distance from the line charge from first					
		principles.					
	b)	Solve the electric field intensity at	L3	CO1	5 M		
		distance 'z' above the center of a flat					
		circular disc of radius 'r', which carries a					
		uniform surface charge.					
		OR					
3	a)	Illustrate the Relationship between	L3	CO6	5 M		
		electric field and electric potential.					
	b)	A Charge of -0.3 μ C is located at A(25,	L3	CO6	5 M		
		-30, 15) cm and a second charge of					
		0.5 μC is at B(-10, 8, 12) cm. Find E					
		at (i) the origin (ii) P(15, 20, 50) cm.					
		UNIT-II					
4	Wh	at is meant by electric dipole? Develop the	L2	CO2	10 M		
	exp	pression for electric field intensity due to					
	eleo	ctric dipole.					
OR							
5	Tw	o dipoles with dipole moments -5 a _z nC/m	L3	CO2	10 M		
	and	9 a_z nC/m are located at points (0, 0, -2)					
	and	(0, 0, 3) respectively. Find the potential at					
	the	origin.					
L	1		1	1	1		

	UNIT-III					
6	a)	A parallel plate capacitor consists of three dielectric layers. If $\mathcal{E}_{r1}=1, d_1=0.4$ mm, $\mathcal{E}_{r2}=2, d_2=0.6$ mm, $\mathcal{E}_{r3}=3, d_3=0.8$ mm and area of cross section 20cm ² . Find capacitance.	L3	CO3	5 M	
	b)	Derive the expressions for the capacitance of a parallel plate capacitor and the energy stored in it.	L4	CO3	5 M	
	L	OR	•			
7	a)	A filamentary current of 15A is directed in from infinity to the origin on the positive x axis and then back out to infinity along the position y axis. Use the Biot-Savart's law to find H at P (0, 0, 1)	L3	CO3	6 M	
	b)	Estimate the magnetic field intensity at centre of a square of sides equal to 5m and carrying a current equal to 10 A.	L2	CO3	4 M	
	UNIT-IV					
8	a)	Explain that the force between two parallel conductors carrying current in the same direction is attractive.	L2	CO4	5 M	
	b)	If the magnetic field intensity $H=(0.01/\mu_0)$ A/m, What is the force on a charge of 0.1pC moving with a velocity of $10^6 a_x$ m/s.	L3	CO4	5 M	
	OR					

9	a)	Derive the expression for self-inductance	L4	CO4	5 M
		of a coaxial cable of inner radius 'a' and			
		outer radius 'b'.			
	b)	Determine the inductance of a solenoid of	L3	CO4	5 M
		2500 turns wound uniformly over a			
		length of 0.25m on a cylindrical paper			
		tube, 4 cm in diameter and the medium is			
		air.			
UNIT-V					
10	10 State the Poynting Theorem and derive the			CO5	10 M
	nec	essary expressions.			
OR					
11	Der	rive the Maxwell's fourth equation for	L4	CO5	10 M
	tim	e varying fields.			