II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

DC MACHINES AND TRANSFORMERS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

1	-	1 1	1
BL – Blooms Level			CO – Course Outcome

PART – A

		BL	CO
1.a)	List any two applications of DC generator.	L1	CO1
1.b)	What is back emf in DC motor?		CO2
1.c)	Why a starter is necessary for a DC motor?		CO2
1.d)	Name any four applications of DC series motor.		CO1
1.e)	Define the all day efficiency of transformer.	L3	CO3
1.f)	Define the regulation of transformer.	L3	CO3
1.g)	Discuss the necessary conditions for parallel	L3	CO3
	operation of transformer.		
1.h)	Compare two winding transformer with auto	L3	CO3
	transformer.		
1.i)	Draw the open delta connection in 3-phase	L4	CO5
	transformer.		
1.j)	Discuss the impacts of harmonics in 3-phase	L4	CO5
	transformer.		

Max. Marks: 70

PART – B

			BL	СО	Max. Marks	
		UNIT-I				
2	Exp	plain the methods of excitation in DC	L3	CO2	10 M	
	generators and explain shunt, series and					
	con	npound generators.				
	1	OR		1		
3	a)	Explain in detail the armature reaction in	L3	CO2	5 M	
		the DC machines and state its effect.				
	b)	Analyze the methods to minimize the	L4	CO4	5 M	
		armature reaction.				
	1	UNIT-II		1		
4	4 In a DC machine, the total iron loss is 8KW at			CO4	10 M	
	its rated speed and excitation. If excitation					
	remains the same, but speed is reduced by					
	25%, the total loss is found to be 5KW.					
	Calculate the hysteresis and eddy current					
	losses at (i) full speed, (ii) half the rated					
	spe	ed.				
	OR					
5	Exp	plain the Swinburne's test in DC machine.	L4	CO4	10 M	
UNIT-III						
6	Dis	cuss in detail how the mutual induction	L3	CO3	10 M	
	principle is working on a single phase					
	tran	sformer with needed diagrams.				
		OR				

7	a)	Analyze the various types of losses in a	L4	CO5	5 M
		single phase transformer.			
	b)	Develop the equivalent circuit of a single	L4	CO5	5 M
		phase transformer.			
		UNIT-IV			
8	Co	nstruct the equivalent circuit of auto-	L4	CO5	10 M
	transformer.				
		OR			
9	a)	Elaborate the OC test on transformer with	L4	CO5	5 M
		appropriate diagrams.			
	b)	Explain in detail the construction and	L3	CO3	5 M
		working principle of Auto transformer.			
		UNIT-V			
10	Exp	plain the Scott connection operation with	L4	CO5	10 M
	necessary circuit diagrams.				
		OR			
11	A 5	500KVA, 3 phase, 50Hz transformer has a	L4	CO5	10 M
	voltage ratio (line voltages) of 33/11KV and				
	is delta/star connected. The resistances per				
	phase are: high voltage 35Ω , low voltage				
	0.876 Ω and the iron loss is 3050W. Calculate				
	the value of efficiency at full load and one				
	half of full load with 0.8 lagging power				
	factor.				