II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

ELECTRICAL CIRCUIT ANALYSIS - II (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.

PART - A

- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

		BL	CO
1. a)	State any two applications of Laplace transform.	L2	CO1
b)	Mention the properties of Laplace transform.	L2	CO1
c)	Express the condition for reciprocity and	L3	CO2
	symmetry in a two port Z - parameter		
	representation.		
d)	What are called Admittance parameters?	L1	CO2
e)	Draw the transient growth and decay curves for an		CO3
	L –R circuit.		
f)	List the properties of RLC Series circuit.	L1	CO3
g)	Explain the difference between "balanced" and		CO4
	"unbalanced" load.		
h)	Why three phase systems are preferred over single-		CO4
	phase systems for the transmission of power?		
i)	Differentiate low pass and High pass filter.		CO5
j)	What do you mean by Passive filter?	L2	CO5

Max. Marks: 70

CO – Course Outcome

PART – B

		1					
		BL	CO	Max. Marks			
				WILLING			
	UNIT-I						
2	Calculate the Fourier series for the function	L3	CO1	10 M			
	shown in figure 1.						
	f(t)						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	1-1						
	Figure (1)						
	OR						
3	a) Find the Laplace transform of $e^{-at}u(t)$.	L3	CO1	5 M			
	b) Determine the Inverse Laplace transform of	L3	CO1	5 M			
	6 (<i>S</i> +2)						
	(S+1)(S+3)(S+4)						
UNIT-II							
4	The Z-parameters of a two- port network is	L3	CO2	10 M			
	$Z_{11}=15\Omega$, $Z_{12}=Z_{21}=6\Omega$ and $Z_{22}=24\Omega$. Determine						
	ABCD parameters.						
	OR						
5	For the network shown in the figure 2, determine	L3	CO2	10 M			
	ABCD parameters and using these parameters						
	calculate impedance parameters.						
	Port 1 8 0 Port 2						
	o0						
	Figure (2)						
	Figure (2)						

UNIT-III						
6	De	rive the expression for the current in a series	L3	CO3	10 M	
	RL	L circuit (R = 10Ω , L = 10 mH) excited by a				
	sin	usoidal voltage of 100V, 50 Hz if the supply is				
	coi	nnected at $t = 0$. Assume zero initial conditions.				
		OR				
7	a)	What is the condition for the response of a	L3	CO3	5 M	
		series RLC circuit excited by DC supply to				
		have critically damped response?				
	b)	Draw the time response of inductor current in	L3	CO3	5 M	
		a series RL circuit excited by DC supply (step				
		response).				
			L			
		UNIT-IV				
8	An	unbalanced connected load is connected	L3	CO4	10 M	
	acr	ross a balanced 3 phase RYB 440V supply.				
	Find the wattmeter reading connected in the					
	circuit shown in figure 3.					
	W					
		R				
		1010 2 1010 D				
		Y				
		B •				
		figure (3)				
	OR					

9	Ał	balanced three phase three wire system has a Y-	L3	CO4	10 M		
	connected load. Each phase contains three loads						
	in	parallel: -j 100 Ω , 100 Ω and 50 + j50 Ω .					
	As	sume positive phase sequence with V_{ab} =					
	400	Ovolts. Find					
	((i) V _{an}					
	((ii) $I_a A$					
	((iii) The power factor of the load					
		(iv) The total power drawn by the load					
		UNIT-V					
10	Wı	rite a Short note on :	L2	CO5	10 M		
	i. Constant k Low pass filter						
	i	i. Constant k High pass filter					
OR							
11	a)	Design a constant k low pass T Section filter	L3	CO5	6 M		
		having cut off frequency of 4khz and normal					
		characteristic impedence of 500Ω .					
	b)	Calculate the cut-off frequency of active high	L3	CO5	4 M		
		pass filter circuit using a $330k\Omega$ resistor and					
		100pF capacitor.					