II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

NUMERICAL METHODS AND COMPLEX VARIABLES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration:	3	hours
-----------	---	-------

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

CO – Course Outcome

Max. Marks: 70

		BL	CO
1.a)	Under what conditions, Newton-Raphson's method fails to find root of an equation?	L2	CO1
1.b)	Prove that $(1 + \Delta)(1 - \nabla) = 1$	L2	CO1
1.c)	Using Newton's forward interpolation formula, write the formula for 2^{nd} order derivative.	L3	CO2
1.d)	Write Simpson's ³ / ₈ rule.	L1	CO2
1.e)	Verify whether the function $u(x, y) = e^x \cos y$ is harmonic or not?	L2	CO3
1.f)	Write Cauchy-Riemann (C-R) equations in cartesian form.	L2	CO1
1.g)	State Cauchy's integral theorem.	L2	CO1
1.h)	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in Taylor's series about $z = 0$	L3	CO3
1.i)	Find the residue of $f(z) = \frac{z^3}{z^2 - 1}$ at $z = 1$.	L3	CO3

$\mathbf{PART} - \mathbf{A}$

1.j)	Write the zeros and the poles of $f(z) = \frac{z^4 + 1}{z^3(1-z)}$	L2	CO1	
------	--	----	-----	--

PART – B

$\mathbf{I}\mathbf{A}\mathbf{K}\mathbf{I} = \mathbf{D}$						
			BL	CO	Max. Marks	
	UNIT-I					
2	a)	Apply Bisection method to find a real	L3	CO2	5 M	
		root of the equation $x^3 - x^2 - 1 = 0$				
		correct to two decimal places.				
	b)	Using regula falsi method, find a real root	L3	CO2	5 M	
		of an equation $e^x \tan x = 1$				
OR						
3	a)	Given	L4	CO4	5 M	
		$\log_{10}^{654} = 2.8156$, $\log_{10}^{658} = 2.8182$,				
		$\log_{10}^{659} = 2.8189$, $\log_{10}^{661} = 2.8202$				
		Estimate the value of \log_{10}^{656} using				
	Lagrange's interpolation formula.					
	b)	Estimate $f(3.75)$ using Newton's	L4	CO4	5 M	
		forward interpolation formula from the				
		following table				
		x 2.5 3.0 3.5 4.0				
		f(x) 24.1 22.0 20.2 18.6				
	<u> </u>		<u> </u>	<u> </u>		

		UNIT-II			
4	Ap	ply Runge-Kutta (R-K) fourth order	L3	CO2	10 M
	met	thod, to find $y(0.2)$ and $y(0.4)$. Given that			
	dy	$=\frac{y^2 - x^2}{y^2 + x^2} , y(0) = 1.$			
	$\frac{dx}{dx}$	$-\frac{1}{y^2+x^2}$, $y(0)=1$.			
		OR			
5	a)	Evaluate $\int_0^1 x^3 dx$ with three sub	L4	CO4	5 M
		intervals by using Trapezoidal rule.			
	b)	Estimate the approximate value of the	L4	CO4	5 M
		integral $\int_{0}^{\pi/2} \sqrt{\cos\theta} d\theta$ with step size $h = \frac{\pi}{12}$			
		using Simpson's ¹ / ₃ rule.			
		UNIT-III			
6	a)	Show that the function $f(z) = \sqrt{ xy }$ is	L4	CO5	5 M
		not analytic at the origin, although			
		Cauchy-Riemann equations are satisfied			
		at that point.			
	b)	Construct an analytic function	L3	CO3	5 M
		f(z) = u + iv whose real part is			
		u = 4xy - 3x + 2.			
		OR			
7	Cor	nstruct an analytic function $f(z) = u + iv$	L3	CO3	10 M
	who	ose imaginary part is $e^x (x \sin y + y \cos y)$			
				I	

	UNIT-IV						
8	Evaluate $\int_{C} \frac{e^{z}}{(z-1)(z+3)} dz$ where C is the	L4	CO5	10 M			
	circle $ z = \frac{3}{2}$ using Cauchy's integral						
	formula.						
	OR						
9	Expand $f(z) = \frac{1}{(z-1)(z-3)}$ in Laurent's series	L3	CO3	10 M			
	expansion for						
	<i>i</i>) $ z < 1$ <i>ii</i>) $1 < z < 3$ <i>iii</i>) $ z > 3$						
	UNIT-V						
10	Evaluate $\int_{C} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz$ where C is the circle	L3	CO3	10 M			
	z = 4 using Cauchy's residue theorem.						
	OR						
11	Using calculus of residues show that	L4	CO5	10 M			
	$\int_{0}^{\pi} \frac{d\theta}{a+b\cos\theta} = \frac{\pi}{\sqrt{a^2 - b^2}} , (a > b > 0)$						