Code: 23ES1303

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

SIGNALS AND SYSTEMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	Find the energy of the signal e ^{-2t} u (t).	L2	CO1
b)	Identify whether the given system is causal	L2	CO1
	y[n] = 3x[n-5]+3x[n+1].	LZ	
c)	List the steps to compute convolution integral.	L1	CO2
d)	State the Causality and Stability for LTI Systems.	L2	CO2
e)	State Parseval's relation for continuous time periodic	L2	CO3
	signals.	L2	COS
f)	Find the Fourier transform of the unit impulse.	L2	CO3
g)	State Convolution Property and Integration in the	L2	CO4
	Time Domain property of Laplace transform.	L2	
h)	Indicate ROC of Laplace transform of the function	L2	CO4
	$x(t) = e^{t}u(t)$	12	
i)	According to Time shifting property of z-transform, if		
	X(Z) is the z-transform of $x[n]$ then find the z-	L2	CO4
	transform of $x[n-k_0]$?		
j)	Find the Z -transform of the signal and its associated	L2	CO4
	ROC $x[n] = \{2, -1, 4, 0, 2, 1\}$	L	CO4

PART - B

			BL	СО	Max.	
			DL		Marks	
	UNIT-I					
2	a)	Identify whether the following system is	L2	CO1	4 M	
		linear, causal, time invariant and				
		dynamic.				
		$y(t) = x^2(t)$				
	b)	Describe through examples, the	L2	CO1	6 M	
		classification of signals.				
		OR		1		
3	a)	Define and sketch an impulse function	L2	CO1	5 M	
		and also discuss the properties.				
	b)	Develop and sketch the even and odd	L3	CO1	5 M	
		components of the signal $x(t) = e^{j4t}$.				
	UNIT-II					
4	a)	What is an LTI system? Derive the	L3	CO2	5 M	
		properties of discrete time LTI system.				
	b)	Compute the convolution of the signals	L3	CO2	5 M	
		$x_1(t) = e^{-2t} u(t) \text{ and } x_2(t) = u(t-1).$				
		OR		1		
5	a)	Evaluate the causality and stability of the	L4	CO2	4 M	
		system with response $h(t) = e^{-t} u(t)$.				
	b)	The LTI system with impulse response	L4	CO2	6 M	
		$h(t) = e^{-t} u(t)$ for an input $x(t) = e^{-2t} u(t)$.				
		Find the output y(t).				
	UNIT-III					
6	a)	List and discuss the properties of Fourier	L2	CO3	5 M	
		series.				

	b)	Determine the Exponential Fourier series	L3	CO3	5 M
		for the rectified Sine wave as shown in			
		figure.			
		f(t)			
		$\overbrace{\begin{array}{ccccccccccccccccccccccccccccccccccc$			
		OR			
7	a)	State and prove the following Fourier	L2	CO3	5 M
		transform properties:			
		i) Convolution in time domain			
		ii) time shifting			
	b)	Compute the Fourier transform of each of	L3	CO3	5 M
		the following signal			
		$x(t) = [e^{-at} \cos \omega_0 t] u(t), a > 0$			
		UNIT-IV			
8	a)	Explain the properties of ROC for	L4	CO4	6 M
		various classes of signals of Laplace			
		transform.			
	b)	Determine the Laplace transform of x(t)	L3	CO4	4 M
		= te ^{-at} u(t) and indicate its ROC.			
		OR			
9	a)	Define bilateral and unilateral Laplace	L2	CO4	5 M
		transform and state any five properties of			
		Laplace transform including ROC.			
	b)	Determine $x(t)$ for the following	L3	CO4	5 M
		conditions if X(s) is given by			
		$X(s) = \frac{1}{(s+3)(s+5)}$			
		i. x(t) is right-sided			
		ii. x(t) is left-sided			

UNIT-V						
10	a)	Explain the properties of the region of	L4	CO4	5 M	
		convergence of $X(z)$.				
	b)	Discuss in detail about the double sided	L4	CO4	5 M	
		and single sided Z-transform. Correlate				
		Fourier transform and Z transform in				
		their end use.				
	OR					
11	a)	State and prove the following properties	L2	CO4	5 M	
		of Z-transform.				
		i) Differentiation in the Z-Domain				
		ii) Multiplication by an exponential				
		sequence.				
	b)	Formulate the Z transform and prepare	L6	CO4	5 M	
		the pole zero plot with ROC				
		(i) $x[n] = (0.5)^n u[n] - (1/3)^n u[n]$.				
		(ii) $x[n] = \sin(\omega_0 n)u[n]$				