Code: 23EC3302

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

SWITCHING THEORY AND LOGIC DESIGN (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1.a)	Define Self Complimenting Code.	L1	CO1
1.b)	Simplify the following Boolean expression $F = A+B+A'B'C$.	L2	CO3
1.c)	Given $F = xy + x'z$. Convert this into canonical SOP form.	L2	CO3
1.d)	Realize Ex-OR gate using NAND Gates.	L3	CO2
1.e)	Draw the logic diagram of 4x1 Mux.	L2	CO2
1.f)	Write the truth table of BCD to 7-segment decoder.	L2	CO4
1.g)	Compare Latch and flip-flop.	L2	CO4
1.h)	Compare combinational and sequential circuits.	L2	CO4
1.i)	What is Mealy and Moore model?	L1	CO5
1.j)	Write the excitation table of JK flip-flop.	L1	CO5

PART - B

			BL	СО	Max. Marks					
	UNIT-I									
2	a)	Using Hamming Code, the received message is	L3	CO1	5 M					
		0001110. Find errors, if any, and give the								
		correct message by using Even Parity.								
	b)	Perform BCD Subtraction for following decimal	L3	CO1	5 M					
		numbers: 56 - 28.								
		OR								
3	a)	Realise $F = BD' + C'D' + B'D$ using NAND	L2	CO2	5 M					
		gates.								
	b)	Define Signed Binary number and explain the	L2	CO1	5 M					
		different compliment forms in signed numbers								
		with example.								
	1	UNIT-II	T	T						
4	a)	Simplify	L3	CO3	6 M					
		$F(A,B,C,D)=\sum m(4,5,6,7,12,13,14)+d(1,9,11,15)$								
		using K-map.								
	b)	Implement the following Boolean function	L3	CO2	4 M					
		F = WY+WXY+W'XY+WX+Z using NAND								
		gates.								
	OR									
5	a)	Convert the given function to canonical POS	L3	CO3	5 M					
		form $F = (A+B)(B+C)(A+C)$								
	b)	Simplify the following Boolean function using	L3	CO3	5 M					
		K-map								
		$F(A,B,C,D) = \Pi M(1,3,4,11,12,13,14,15)$								

		UNIT-III			
6	a)	Design BCD to Excess-3 Code Converter.	L5	CO4	5 M
	b)	Design and explain a 4-bit binary parallel	L4	CO4	5 M
		Adder / Subtractor.			
		OR			
			T 0	004	
7	a)	Realise the function	L3	CO4	5 M
		$F(A, B, C, D) = \sum_{i=1}^{n} (0, 1, 5, 6, 7, 10, 14)$ using			
		an 8x1 multiplexer.			
	b)	Design Full adder and draw the logic diagram	L4	CO4	5 M
		with help of simplified output expressions.			
		UNIT-IV			
8	a)	Explain the operation of Master slave J-K flip	L3	CO4	5 M
		flop.			
	b)	Explain the operation of bidirectional shift	L3	CO4	5 M
		register with the help of logic diagram.			
		OR			
9	a)	Draw and explain a 4-bit ring counter using	L4	CO4	5 M
		D - flip flops			
	b)	Derive the Characteristic equation, Excitation	L3	CO4	5 M
		table and State diagram of D-flipflop.			
	•				
		UNIT-V			
10	a)	Design a 1011 sequence detector and draw its	L5	CO5	6 M
		logic diagram.			
	b)	Explain State Diagram and State table.	L2	CO5	4 M

OR										
11	a)	Using	partitio	ning m	inimizat	cion pro	cedure	L3	CO5	5 M
		reduce	the follo	wing sta	te table:					
			PS	NS		Output				
				X=0	X=1	Z				
			A	D	В	1				
			В	A	Е	0				
			С	A	Е	1				
			D	С	A	0				
			Е	F	D	0				
			F	F	D	1				
	b)	b) A sequential circuit has two JK flip-flops A and							CO5	5 M
	B. The flip-flop input functions are:									
	$J_A=B$; $K_A=Bx$									
		$J_B=x; K_B=A \bigoplus x$								
		i) Draw the logic diagram of the circuit								
		ii) Tabulate the state table								
	iii) Draw the state diagram									