Code: 23BS1304

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

PROBABILITY THEORY AND STOCHASTIC PROCESS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Define probability with an example.	L1	CO1
1.b)	Define a Mutually Exclusive Event with an	L1	CO1
	example.		
1.c)	Briefly explain about Moment Generating	L2	CO2
	Function		
1.d)	State Chebychev's Inequality.	L2	CO2
1.e)	Explain about marginal density function.	L2	CO3
1.f)	Explain any two properties of Expectations	L2	CO3
1.g)	Define Stationary Random Process.	L1	CO4
1.h)	Define LTI System.	L1	CO4
1.i)	Explain Power Spectral Density.	L2	CO5
1.j)	What is Noise Margin?	L2	CO5

PART - B

		BL	СО	Max. Marks
	UNIT-I			
2	When two dice are thrown determine the	L3	CO1	10 M
	probability of the following events			
	i. $A=\{Sum=7\}$			
	ii. B={8 <sum≤11}< td=""><td></td><td></td><td></td></sum≤11}<>			
	iii. C= {10 <sum}< th=""><th></th><th></th><th></th></sum}<>			
	iv. $P(B \cap C)$			
	v. Find if the events B and C are			
	independent or not.			
2	OR	1.0	001	10 1/
3	Discuss the following probability distribution	L2	COI	10 M
	and density functions of the following random			
	variables:			
	(i) Binomial distribution			
	(ii) Gaussian distribution			
	(iii) Uniform distribution.			
	(iv) Rayleigh distribution.			
	UNIT-II			
4	Explain about Moments about its origin and	L2	CO2	10 M
	Moments about its mean.			
	OR		•	•
5	Find the Mean using the Moment Generating	L3	CO2	10 M
	function for the Uniform Random Variable.			
		1	<u> </u>	

	UNIT-III			
6	Given the function	L3	CO3	10 M
	$f_{X,Y}(x,y) = \begin{cases} b(x+y)^2; \ -2 < x < 2, -3 < y < 3 \\ 0 \ ; \ elsewhere \end{cases}$			
	(a) Find the constant b such that this is a valid			
	density function.			
	(b) Determine the marginal density functions.			
	OR			
7	a) Explain about Central limit Theorem for	L2	CO3	5 M
	unequal and equal distributions.			
	b) Explain about "jointly Gaussian random	L2	CO3	5 M
	variables".			
UNIT-IV				
8	Explain about first order, second order, wide-	L2	CO4	10 M
	sense and strict sense stationary random process.			
	OR			
9	a) Explain about mean-ergodic random process.	L2	CO4	5 M
	b) If x (t) is a stationary random process	L4	CO4	5 M
	having mean = 3 and auto correlation			
	function : $R_{XX}(\tau) = 9 + 2e^{- \tau }$. Find the			
	mean square and variance of the random			
	variable.			
	UNIT-V		, · · · · · · · · · · · · · · · · · · ·	
10	Derive a relationship between power spectral	L3	CO4	10 M
	density and Auto correlation function.			
	OR			

11	a)	The power spectral density of a stationary.	L4	CO4	5 M
		random process is given by			
		$S_{XX}(\omega) = A ; -K \le \omega \le K$			
		= 0; otherwise			
		Find the auto correlation function.			
	b)	Explain briefly about different types of noise.	L2	CO5	5 M