II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

ADVANCED DATA STRUCTURES AND ALGORITHM ANALYSIS

(Common for CSE, AIML, DS)

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

```
CO – Course Outcome
```

Max. Marks: 70

$\mathbf{PART} - \mathbf{A}$

		BL	CO
1.a)	Given the growth rate of standard function as shown	L2	CO1
	below, arrange them in ascending order of time		
	complexity.		
	i) n^{3} ii) $n\log(n/5)$ iii) 2^{n+1} iv) $\log(n+1)$ e) $n/2$		
1.b)	Given the AVL tree in figure, insert the node 27 to the	L3	CO3
	tree and rebalance if the tree is unbalanced, mark the		
	balance factors in each step of the process.		
	(20)		
	5 15		
1.c)	Define heap data structure. What are the operations on	L2	CO3
	heap.		
1.d)	Define the path and cycle of a graph. Give an example.	L1	CO3
1.e)	What is the time complexity of Quick Sort and Merge	L2	CO1
	Sort algorithm.		

BL – Blooms Level

1.f)	Packets in a buffer on a router have arrived in the	L3	CO4
	following order:		
	i)Pkt12; t=0.2745s ;P5		
	ii)Pkt06 ; t=1.1376s ;P3		
	iii)Pkt21; t=1.8953s ;P2		
	iv)Pkt24 ; t=2.0012s ;P1		
	v)Pkt17; t= 1.003s; P4		
	P1(Highest),P2,P3,P4,P5(Lowest) indicate the priority		
	of the packets and t is the time arrival of the packets.		
	What is the order in which these packets are arranged		
	in a priority queue?		
1.g)	Match the following:	L2	CO4
	i) Knapsack a) $O(2^k)$		
	ii) Binary Search b) O(n log(n))		
	iii) Merge sort c) $O(n^3)$		
	iv) Matrix Multiplication d) O(log(n))		
1.h)	Give any two differences between Dijkstra's algorithm	L2	CO1
	and Bellman-Ford algorithm.		
1.i)	Give examples for NP complete and NP hard problems.	L2	CO1

PART – B

			BL	CO	Max. Marks
		UNIT-I			
2	a)	Construct an AVL tree by inserting the following elements in the given order. 37, 63, 108, 21, 85, 99.Now delete 108 form this tree. Rebalance if	L3	CO3	5 M
		necessary.			
	b)	Define i) Time Complexity and ii) Space Complexity. For the given Algorithm, find the worst-case time complexity. Express your answer in big O notation. Show each step of the calculations. Algorithm sum(a,n) { s=0.0;	L2	CO1	5 M

		for i=1 to n do				
		s=s+a[i];				
		return s;				
		}				
		OR				
3	Coi	mpare and contrast B-trees with Binary trees and	L3	CO3	10 M	
	giv	e their time complexities. Show the results of				
	inse	erting the keys 6, 19, 17, 11, 3, 12, 8, 20, 22 in the				
	giv	en order into an empty B-Tree with minimum				
	deg	ree t=2.				
		UNIT-II	[
4	a)	Using the property of Min Heap, Heapify the	L3	CO3	5 M	
		above give graph to get the min heap. Give the				
		complete details step-by-step.				
		(16)				
		2 3				
		i (4) (10)				
		4 5 6 7				
		(14) (7) (9) (3)				
		8 9 10				
		(2) (8) (1)				
	b)	For the given graph, find the breadth first search	L3	CO3	5 M	
	- /	traversal. Give the details of each step.				
		5				
		4				
	OR					
5	a)	Define the following terms with examples	L2	CO1	5 M	
		i)Graph				
		ii)Vertex of a graph				

UNIT-V					
10	a)	Explain the following with examples:	L2	CO1	5 M
		P class; NP class and NP-complete class with			
		examples.			
	b)	Explain n-queens problem using backtracking	L2	CO4	5 M
		approach.			
OR					
11	a)	Explain graph coloring problem with an	L2	CO4	5 M
		example.			
	b)	Write backtracking algorithm for sum of subsets	L2	CO4	5 M
		problem.			