II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

SURVEYING (CIVIL ENGINEERING)

Max. Marl

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

_	 -
BL – Blooms Level	CO – Course Outcome

PART – A

		BL	CO
1.a)	List the accessories of plane table.	L1	CO1
1.b)	What is Magnetic Declination?	L1	CO2
1.c)	What is meant by the reduction of levels?	L1	CO1
1.d)	Write the formula for Simpson's rule.	L1	CO3
1.e)	List any three uses of theodolite.	L1	CO1
1.f)	Distinguish between Line of Collimation and	L2	CO2
	Line of Sight.		
1.g)	What are the advantages of reverse curves?	L1	CO4
1.h)	Write any two advantages of Total station.	L1	CO4
1.i)	What is radial triangulation?	L1	CO5
1.j)	What you meant by Photogrammetry Survey?	L1	CO5

ks: 70

PART - B

			BL	СО	Max. Marks					
UNIT-I										
2	a)	Explain different methods of plane	L2	CO1	5 M					
		Surveying? Under what circumstances								
		they are preferred? Also give salient								
		features of these methods.								
	b)	Distinguish between W.C.B and Q.B	L2	CO1	5 M					
	systems.									
		OR								
3	a)	What is local attraction? Explain how the	L2	CO1	5 M					
		bearings are corrected for local attraction.								
	b)	Explain different types of tape	L2	CO2	5 M					
		corrections.								
		UNIT-II								
4	a)	Explain the temporary adjustments of a	L2	CO2	4 M					
	,	leveling.								
	b)	Describe different indirect methods of	L2	CO2	6 M					
		locating a contour? Write about any one								
		method in detail.								
				L						
	OR									
5	А	railway embankment 800m long is 15m	L3	CO3	10 M					
	wid	e at the formation level and has the side								
	slope 2 to 1. The ground levels at every 200m									
	along the center line are as under.									

	Di	stance	0	200	400	600	800			
	R .]	L	202.8	208.2	209.5	208.2	211.3			
	The formation level at zero chainage is									
	207	'.00 ar	nd the	embar	nkment	has a	rising			
	gra	dient o	of 1 in	100.	The gr	round i	s level			
	acro	oss the	center	line. Ca	alculate	the vol	ume of			
	ear	th worl	k using	Trapez	zoidal a	and Pris	smoidal			
	rule	2.								
					UNIT	-III				
6	A t	heodol	ite was	set up	at a dis	tance o	f 200m	L3	CO1	10 M
	froi	n a to	wer. Th	e angl	e of ele	evations	s to the			
	top	of the	e tower	was	8°18' v	vhile a	ngle of			
	dep	ression	n was 2	2°24'.	The sta	aff read	ling on			
	the	BM o	f RL 2	48.362	m with	the te	lescope			
	horizontal was 1.286m. Find the height of the									
	tower and RL of the top of the tower.									
	1	T			OF	R			Γ	
7	7 a) Explain traversing methods and describe							L2	CO2	5 M
		how a	djustm	ent will	l be dor	ne.				
	b)	Expla	in rei	teratior	n met	hod to	o find	L2	CO1	5 M
		horizo	ontal an	gles.						
	UNIT-IV									
8	3 What is meant by degree of a curve? Explain L2 CO4 10								10 M	
	the different methods of designating a curve?									
	Derive a relationship between the degree of									
a curve and its radius.										
	OR									

9	a)	Explain in detail about the different types	L2	CO4	5 M		
		of E.D.M instruments.					
	b)	Describe about Drone survey and LiDAR	L2	CO4	5 M		
		Survey.					
10	Des	scribe the contents of specifications for	L2	CO5	10 M		
	terr	estrial photogrammetry.					
OR							
11	a)	Distinguish between aerial triangulation	L2	CO5	5 M		
		and radial triangulation.					
	b)	Describe ground control extension for	L2	CO5	5 M		
		photographic mapping in detail.					