II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

ELECTROMAGNETIC FIELD THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

		BL	CO
1.a)	Define Electric Flux?	L1	CO1
1.b)	State Coulomb's law.	L1	CO1
1.c)	Discuss Electric dipole moment.	L2	CO2
1.d)	Explain polarization. Is polarization present in conductors?	L2	CO2
1.e)	What is meant by boundary condition? How they are useful?	L2	CO3
1.f)	Classify the fundamental difference between static electric and magnetic field lines?	L2	CO3
1.g)	Indicate the expression for Lorentz force equation and write its significance.	L2	CO4
1.h)	Define mutual inductance.	L1	CO4
1.i)	Cite the integral and point forms of Faraday's laws.	L2	CO5
1.j)	Define Poynting vector.	L1	CO5

$\mathbf{PART} - \mathbf{A}$

Max. Marks: 70

BL – Blooms Level CO – Course Outcome

PART – B

			BL	СО	Max.		
					Marks		
	UNIT-I						
2	a)	Illustrate the electric field intensity due to	L4	CO1	5 M		
		infinite line charge, at a point					
		perpendicular to its plane and at a given					
		distance from the line charge from first					
		principles.					
	b)	Solve the electric field intensity at	L3	CO1	5 M		
		distance 'z' above the center of a flat					
		circular disc of radius 'r', which carries a					
		uniform surface charge.					
		OR					
3	a)	Illustrate the Relationship between	L3	CO6	5 M		
		electric field and electric potential.					
	b)	A Charge of -0.3 μ C is located at A(25,	L3	CO6	5 M		
		-30, 15) cm and a second charge of					
		0.5 μC is at B(-10, 8, 12) cm. Find E					
		at (i) the origin (ii) P(15, 20, 50) cm.					
		UNIT-II					
4	Wh	at is meant by electric dipole? Develop the	L2	CO2	10 M		
	exp	ression for electric field intensity due to					
	elec	etric dipole.					
OR							
5	Tw	o dipoles with dipole moments $-5 a_z nC/m$	L3	CO2	10 M		
	and	9 a_z nC/m are located at points (0, 0, -2)					
	and	(0, 0, 3) respectively. Find the potential at					
	the	origin.					

TINITT III						
6	a)	A parallel plate capacitor consists of	L3	CO3	5 M	
		three dielectric layers. If $\mathcal{E}_{r1}=1, d_1=0.4$ mm,				
		$E_{r2}=2$, $d_2=0.6$ mm, $E_{r3}=3$, $d_3=0.8$ mm and				
		area of cross section 20cm ² . Find				
		capacitance.				
	b)	Derive the expressions for the	L4	CO3	5 M	
		capacitance of a parallel plate capacitor				
		and the energy stored in it.				
	1	OR	I	11		
7	a)	A filamentary current of 15A is directed	L3	CO3	6 M	
		in from infinity to the origin on the				
		positive x axis and then back out to				
		infinity along the position y axis. Use the				
		Biot-Savart's law to find H at P (0, 0, 1)				
	b)	Estimate the magnetic field intensity at	L2	CO3	4 M	
		centre of a square of sides equal to 5m				
		and carrying a current equal to 10 A.				
	I		I	11		
		UNIT-IV				
8	a)	Explain that the force between two	L2	CO4	5 M	
		parallel conductors carrying current in the				
		same direction is attractive.				
	b)	If the magnetic field intensity	L3	CO4	5 M	
		H=(0.01/ μ_0) A/m, What is the force on a				
		charge of 0.1pC moving with a velocity				
		of $10^6 a_x m/s$.				
O D						
		UK				

9	a)	Derive the expression for self-inductance	L4	CO4	5 M		
		of a coaxial cable of inner radius 'a' and					
		outer radius 'b'.					
	b)	Determine the inductance of a solenoid of	L3	CO4	5 M		
		2500 turns wound uniformly over a					
		length of 0.25m on a cylindrical paper					
		tube, 4 cm in diameter and the medium is					
		air.					
UNIT-V							
10	Sta	te the Poynting Theorem and derive the	L4	CO5	10 M		
	nec	essary expressions.					
OR							
11	Der	rive the Maxwell's fourth equation for	L4	CO5	10 M		
	tim	e varying fields.					