II B.Tech - I Semester – Regular Examinations - DECEMBER 2024

STRENGTH OF MATERIALS (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course	Outcome
-------------	---------

		BL	CO
1.a)	Define elasticity and plasticity in the context of	L1	CO1
	material behavior.		
1.b)	Define Factor of Safety.	L1	CO1
1.c)	What is a point of contraflexure in a beam?	L1	CO2
1.d)	What is the relationship between shear force and	L2	CO2
	bending moment at a section of a beam?		
1.e)	Mention the assumptions for theory of simple	L1	CO3
	bending.		
1.f)	Define polar moment of inertia, and why is it	L1	CO3
	important in torsion.		
1.g)	Define the slope and deflection of a beam.	L1	CO4
1.h)	State the moment area method for calculating the	L1	CO4
	deflection of beams.		
1.i)	Define the term "crippling load" in columns.	L1	CO5
1.j)	Define the radial stress in a thick cylindrical	L1	CO5
	shell.		

$\mathbf{PART}-\mathbf{A}$

PART – B

			BL	СО	Max. Marks	
	UNIT-I					
2	Derive the re	elationship between the elastic	L2	CO1	10 M	
	constants: Yo	ung's modulus, Shear modulus,				
	and Bulk mod	OR				
		UN				
3	Explain the	stresses induced in a bar of	L2	CO1	10 M	
	varying section	on under axial load. Derive the				
	formula for the	e stress distribution.				
	TINIT'T TI					
4	4 Explain the significance of the point of L2 CO					
	contraflexure	in beam analysis and how it is	12		10 101	
	determined in	different types of beams-simply				
	supported, car	tilever and overhang beams.				
	OR					
5	A simply sup	ported beam of length 10 m is	L4	CO2	10 M	
	subjected to t	two point loads of 20 kN and				
	30 kN placed	at 2 m and 7 m from the left				
	support, respe	ectively. Calculate the reactions				
	at the support	s, and draw the S.F. and B.M.				
	diagrams for t	he beam.				

	UNIT-III				
6	A T-section with a flange width of 150 mm,	L3	CO3	10 M	
	flange thickness of 20 mm, web height of				
	300 mm, and web thickness of 15 mm, derive				
	the shear stress distribution across the section				
	when subjected to a shear force of 40 kN.				
	Also Calculate the maximum bending stress				
	when subjected to a bending moment of				
	100 kNm.				
	OR				
7	A hollow circular shaft with an external	L3	CO3	10 M	
	diameter of 250 mm and an internal diameter				
	of 150 mm is subjected to a torque of				
	20 kNm. Calculate the shear stress at the				
	inner and outer surfaces of the shaft. Take				
	G = 80GPa.				
UNIT-IV					
8	Using the double integration method, derive	L3	CO4	10 M	
	the expression for the deflection curve of a				
	simply supported beam of length 'L'				
	subjected to a point load 'P' at its center.				
	Determine the maximum deflection and the				
	slope at the supports.				
OR					
9	A cantilever beam subjected to a couple 'M'	L3	CO4	10 M	
	at the free end, calculate the slope and				
	deflection at the free end by using moment				
	area method.				

UNIT-V				
10	A steel column of length 'L', with both ends	L3	CO5	10 M
	fixed is subjected to an axial load 'P', and a			
	lateral load 'W' acting at its midpoint. Using			
	the Secant formula, determine the maximum			
	stress in the column. Assume any data if			
	necessary.			
OR				
11	A cylindrical shell with a diameter of	L3	CO5	10 M
	1.5 meters, Length 2 meters and a wall			
	thickness of 12 mm is subjected to an internal			
	pressure of 1.5 MPa. Calculate the changes in			
	diameter and volume. Take $E = 180GPa$ and			
	poison's ratio = 0.28.			