

Code: 23BS1303

II B.Tech - I Semester – Regular / Supplementary Examinations
NOVEMBER 2025

NUMERICAL METHODS AND TRANSFORM TECHNIQUES
(MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1. a)	Explain Bisection method.	L2	CO1
b)	Obtain an iterative formula to find the root of $\sqrt[3]{N}$ by Newton Raphson Method.	L3	CO1
c)	Find the first derivative of Newton's forward interpolation formula at $x = x_0$	L1	CO2
d)	Evaluate $\int_0^3 \frac{dx}{1+x^2}$ by trapezoidal Rule.	L3	CO2
e)	State the Taylor's series method formula.	L1	CO2
f)	Solve the differential equation with the given conditions by Picard's method. $\frac{dy}{dx} = 1 + xy$, $y_0=1$ when $x_0=0$ up to y_2 .	L3	CO2
g)	State and prove the first shifting property.	L3	CO3
h)	Find $L\{t^2 e^{2t}\}$	L1	CO3
i)	Explain Dirichlet's conditions.	L2	CO5
j)	Find a_0 if $f(x) = x^2$ in the interval $(0,2\pi)$	L1	CO5

	using Fourier series.		
--	-----------------------	--	--

PART – B

			BL	CO	Max. Marks
UNIT-I					
2	a)	Determine a positive root of $x^3 - 4x + 1 = 0$, correct up to three decimal places by using Regula-falsi method.	L3	CO2	5 M
	b)	Obtain the missing terms in the following table.	L4	CO2	5 M

OR

3	From the following table estimate the number of students who obtained marks between 40 and 45 using Newton's forward interpolation formula.					L3	CO4	10 M
	Marks	30-40	40-50	50-60	60-70	70-80		
	Number of students	31	42	51	35	31		

UNIT-II

4	Find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at $x=1.1$ and at $x=1.6$ for the following table given below.					L3	CO2	10 M
	X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
	Y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

OR

5	a)	A rocket is launched from the ground. Its acceleration is registered during the first 80	L3	CO2	5 M

	<p>seconds and is given as follows:</p> <table border="1"> <tr> <td>t(s)</td><td>0</td><td>10</td><td>20</td><td>30</td><td>40</td><td>50</td><td>60</td><td>70</td><td>80</td></tr> <tr> <td>a(m/s²)</td><td>30</td><td>31.63</td><td>33.34</td><td>35.47</td><td>37.75</td><td>40.33</td><td>43.25</td><td>46.69</td><td>50.67</td></tr> </table> <p>By <i>Simpson's</i> $\frac{1}{3}$ rd rule, find the velocity at t=80 sec.</p>	t(s)	0	10	20	30	40	50	60	70	80	a(m/s ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67		
t(s)	0	10	20	30	40	50	60	70	80														
a(m/s ²)	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67														
b)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Weddle's Rule.	L4	CO4	5 M																			

UNIT-III

6	Apply Milne's method to find the solution of the differential equation $y' = x - y^2$ in the range $0 \leq x \leq 1$ for the condition $y(0)=0$, $h = 0.2$.	L3	CO2	10 M
---	--	----	-----	------

OR

7	a) Apply the Runge-Kutta method of fourth order to find an approximate value of y at x=0.1 if $\frac{dy}{dx} = x + y^2$, given that y=1 when x=0 in steps of h=0.1	L3	CO2	5 M
	b) Using modified Euler's method to find the value of y satisfying the equation $\frac{dy}{dx} = \log(x + y)$ for x=1.2, correct up to four decimal places by taking h=0.2. Given that y(1)=2.	L4	CO4	5 M

UNIT-IV

8	a) Determine the inverse Laplace transform of	L3	CO3	5 M
---	---	----	-----	-----

	$\left\{ \frac{4s+15}{16s^2-25} \right\}$ using partial fractions.			
b)	Evaluate $L\{te^t \sin t\}$	L4	CO3	5 M

OR

9	a) Evaluate the Laplace transform of $\frac{\cos at - \cos bt}{t}$	L3	CO3	5 M
	b) Evaluate the inverse Laplace transform of $\log\left(\frac{s+1}{s-1}\right)$	L3	CO3	5 M

UNIT-V

10	Express $f(x) = x , -\pi < x < \pi$ in a Fourier series. Hence deduce	$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$	L3	CO5	10 M
----	--	---	----	-----	------

OR

11	Find the Fourier transform of $f(x) = \begin{cases} a - x , & x \leq a \\ 0, & x > a \end{cases}$ Hence show that $\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$	L4	CO5	10 M
----	--	----	-----	------