

Code: 23EE3301

**II B.Tech - I Semester – Regular / Supplementary Examinations**  
**NOVEMBER 2025**

**ELECTRICAL CIRCUIT ANALYSIS - II**  
**(ELECTRICAL & ELECTRONICS ENGINEERING)**

Duration: 3 hours

Max. Marks: 70

- 
- Note: 1. This question paper contains two Parts A and B.  
 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.  
 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.  
 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

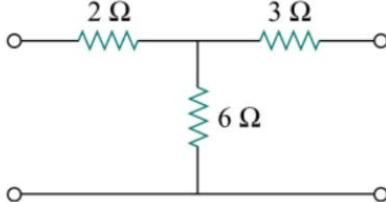
**PART – A**

|      |                                                                                                              | BL | CO  |
|------|--------------------------------------------------------------------------------------------------------------|----|-----|
| 1.a) | How do you find the average and RMS values of a non-sinusoidal periodic waveform using Fourier coefficients? | L2 | CO1 |
| b)   | What is the relationship between the trigonometric and exponential forms of a Fourier series?                | L2 | CO1 |
| c)   | Express the relationship between Z and Hybrid (h) parameters.                                                | L2 | CO2 |
| d)   | Why h-parameters are called as 'hybrid' parameters?                                                          | L2 | CO2 |
| e)   | Distinguish between the natural response and the forced response of a circuit.                               | L2 | CO3 |
| f)   | What is the condition for a series RLC circuit to be underdamped, overdamped and critically damped?          | L2 | CO3 |
| g)   | List the advantages of a three-phase system over a single-phase system.                                      | L2 | CO4 |
| h)   | How can the power factor of a balanced three-phase load be determined from the readings of two watt meters?  | L2 | CO4 |
| i)   | Define the cut-off frequency for a filter.                                                                   | L1 | CO5 |

|    |                                                            |    |     |
|----|------------------------------------------------------------|----|-----|
| j) | Draw the equivalent circuit of a typical band-pass filter. | L3 | CO5 |
|----|------------------------------------------------------------|----|-----|

## PART – B

|  |  |    |    |            |
|--|--|----|----|------------|
|  |  | BL | CO | Max. Marks |
|--|--|----|----|------------|


### UNIT-I

|   |                                                                                                               |    |     |      |
|---|---------------------------------------------------------------------------------------------------------------|----|-----|------|
| 2 | Solve the Laplace transform of the following functions: a) $f(t)=e^{-at} \sin(\omega t)$ b) $f(t)=t^2 u(t-1)$ | L3 | CO1 | 10 M |
|---|---------------------------------------------------------------------------------------------------------------|----|-----|------|

**OR**

|   |                                                                    |    |     |      |
|---|--------------------------------------------------------------------|----|-----|------|
| 3 | Determine the Laplace transform of the periodic sawtooth waveform. | L3 | CO1 | 10 M |
|---|--------------------------------------------------------------------|----|-----|------|

### UNIT-II

|                                                                                     |                                                                    |    |     |      |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|----|-----|------|
| 4                                                                                   | Find the z-parameters of the two-port network shown in the figure. | L3 | CO2 | 10 M |
|  |                                                                    |    |     |      |

**OR**

|   |    |                                                                                                                                               |    |     |     |
|---|----|-----------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 5 | a) | Derive the expressions for converting Y-parameters into ABCD (transmission) parameters.                                                       | L3 | CO2 | 5 M |
|   | b) | Determine the transmission parameters for a two-port network,<br>Given Z-parameters are $Z = \begin{bmatrix} 10 & 5 \\ 3 & 8 \end{bmatrix}$ . | L3 | CO2 | 5 M |

### UNIT-III

|   |                                                                                                                                                                                                                 |    |     |      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
| 6 | A series RLC circuit with $R=5 \Omega$ , $L=1 \text{ H}$ and $C=0.25 \mu\text{F}$ is excited by a 100 V DC source at $t=0$ . Obtain the expression for the current $i(t)$ using the Laplace transform approach. | L4 | CO3 | 10 M |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|

**OR**

|   |    |                                                                                                                                                            |    |     |     |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 7 | a) | Develop an expression for the step response of a series R-C circuit.                                                                                       | L4 | CO3 | 5 M |
|   | b) | Derive the general expression for the current response of a series R-L circuit excited by a sinusoidal voltage source, $V = V_m \sin(\omega t + \theta)$ . | L4 | CO3 | 5 M |

**UNIT-IV**

|   |    |                                                                                                                                                                                                   |    |     |     |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 8 | a) | Derive the relationship between line currents and phase currents in a star -connected three-phase balanced system.                                                                                | L3 | CO4 | 5 M |
|   | b) | The two-wattmeter method produces readings of 1500 W and 750 W when connected to a delta-connected load. Calculate the total active power, total reactive power and the power factor of the load. | L3 | CO4 | 5 M |

**OR**

|   |                                                                                                                                                                                                                              |  |  |    |     |      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|----|-----|------|
| 9 | A balanced star-connected load with an impedance of $(12 + j15) \Omega$ per phase is connected to a three-phase, 400 V, 50 Hz supply. Determine the line currents, power factor and total active power consumed by the load. |  |  | L4 | CO4 | 10 M |
|   |                                                                                                                                                                                                                              |  |  |    |     |      |

**UNIT-V**

|    |    |                                                                                                                                                                |    |     |     |
|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
| 10 | a) | Design a constant-k high-pass T-section and $\pi$ -section filter with a cut-off frequency of 3000 Hz and a nominal characteristic impedance of $500 \Omega$ . | L4 | CO5 | 5 M |
|    | b) | Explain the characteristics of a Constant-K high-pass filter with a neat diagram.                                                                              | L3 | CO5 | 5 M |

**OR**

|    |                                                                                                                                  |  |  |    |     |      |
|----|----------------------------------------------------------------------------------------------------------------------------------|--|--|----|-----|------|
| 11 | Design a constant-k low pass filter having cut-off frequency of 4000 Hz and a nominal characteristic impedance of $500 \Omega$ . |  |  | L4 | CO5 | 10 M |
|    |                                                                                                                                  |  |  |    |     |      |