Code: 23EE3301

II B.Tech - I Semester - Supplementary Examinations - MAY 2025

ELECTRICAL CIRCUIT ANALYSIS - II (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

1.a)	State any two applications of Shifting theorem.	
1.b)	Express the average value of non sinusoidal periodic wave	
	form.	
1.c)	A two-port network is described by $V_1=I_1+2V_2$,	
	$I_2 = -2I_1 + 0.4V_2$ write the impedance matrix.	
1.d)	What are Z and H-parameters?	
1.e)	List the properties of RL impedance function.	
1.f)	Define Time Constant of RC Circuit.	
1.g)	State the relationships between line and phase currents	
	and line and phase voltages for a star-connected system.	
1.h)	How will you measure the power in three phase	
	unbalanced system?	
1.i)	Classify the filters.	
1.j)	What are the applications of filters?	

PART - B

	1				
			Max.		
			Marks		
UNIT-I					
2	Usi	ng the Fourier transform method, find i _o (t), when	10 M		
		$_{\rm s}$ (t) = 10 sin 2t A (Figure 1)			
		$i_{o}(t)$			
		$i_{s}(t)$ \bigcirc $\S 2\Omega$ $\S 4\Omega$			
		$\stackrel{\text{s.}}{\downarrow} 0.5\text{F}$			
		Figure (1)			
		OR			
3	a)	Mention the properties of Fourier Transform.	5 M		
	b)	Find the trigonometric form of fourier series for	5 M		
		given signal			
		f(+)			
		7			
		104			
		t -1 0 1 2 E			
	TINITE II				
1	UNIT-II				
4		the network shown in the figure, determine hybrid	10 M		
		ameters and using these parameters calculate			
	adn	nittance parameters.			

		Port 1 Ω Ω Port 2		
		OR		
5	a)	Derive the condition for Reciprocity and symmetry	5 M	
		in a two port Z - parameter representation.		
	b)	The Z-parameters of a circuit are given by $Z_{11} = 4$;	5 M	
		$Z_{12} = 1$; $Z_{21} = 3$; $Z_{22} = 3$ Obtain the transmission		
		parameters.		
UNIT-III				
6	Obt	tain the expression for i(t) for a series RL circuit when	10 M	
	exit	ted by a source of $V(t)=V_m \sin(wt+\theta)$ using Laplace		
	tran	isform.		
	1	OR		
7	Wit	th the switch open steady state is reached with $V = 100$	10 M	
	sin	314 t volts. The switch is closed at t=0. The circuit is		
	allo	wed to come to steady state again. Determine steady		
	stat	e current and complete solution of transient current.		
		$ \begin{array}{c c} \hline & 1000\Omega \\ \hline & j314\Omega \\ \hline & -j60000\Omega \end{array} $		

	UNIT-IV				
		1035			
8	Show that the total power in a 3-phase, 3-wire system	10 M			
	using the two-wattmeter method of measurement is				
	given by the sum of the wattmeter readings. Draw a				
	connection diagram. Draw a phasor diagram for the two-				
	wattmeter method for a balanced load. Use the phasor				
	diagram to derive a formula from which the power factor				
	of a 3-phase system may be determined using only the				
	wattmeter readings.				
	OR				
9	Three impedances of $(7+j4)$ Ω , $(3+j2)$ Ω and $(9+j2)$ Ω	10 M			
	are connected between neutral and the R, Y and B				
	phases. The line voltage is 440V, Calculate				
	i. The line currents				
	ii. The current in the neutral wire.				
	iii. Find the power consumed in each phase and the				
	total power drawn by the circuit.				
	UNIT-V				
10	Explain the technical concept of Low pass and High pass	10 M			
	filters.				
	OR				
11	Design a constant-k high-pass T and Π sections filters	10 M			
	having a cut-off frequency of 1000 Hz and infinite				
	frequency characteristic impedance of 200 Ω .				