Code: 23BS1302

II B.Tech - I Semester - Supplementary Examinations - MAY 2025

NUMERICAL METHODS AND COMPLEX VARIABLES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

- Note: 1. This question paper contains two Parts A and B.
 - 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
 - 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
 - 4. All parts of Question paper must be answered in one place.

PART – A

1.a)	Find the missing term in the following data			
	X 0 1 2 3 4			
	Y 1 3 9 - 81			
1.b)	Write the relation between Δ and E .			
1.c)	Use Euler's Method to find the approximation to the			
	solution of y at $x = 0.1$ to the initial value problem			
	$\frac{dy}{dx} = 3x + y^2, y(0) = 1.$			
1.d)	Write Simpson's 1/3 rule for integration.			
1.e)	Show that $f(z) = z + 2\bar{z}$ is not Analytic anywhere in the			
	complex plane.			
1.f)	Write C-R Equations in Polar form.			
1.g)	State Cauchy Integral formula.			
1.h)	Expand $f(z) = \sin z$ in Taylor's series about $z = \frac{\pi}{4}$			
1.i)	Determine the poles of $(z) = \frac{z}{\cos z}$.			

Find the residue of $f(z) = \frac{z^2}{(z-a)(z-b)(z-c)}$ at z = a.

PART - B

			Max.			
			Marks			
		UNIT-I				
2	a)	Explain about Newton-Raphson method.	5 M			
	b)	Find the smallest positive root of $x^3 + x^2 - 1 = 0$	5 M			
		up to 2 nd decimal accuracy using Bisection method.				
	OR					
3	a)	Find $y(1.6)$ using Newton's Forward difference	5 M			
		formula from the table				
		x 1 1.4 1.8 2.2				
		y 3.49 4.82 5.96 6.5				
	b)	Using Lagranges interpolation formula find y at	5 M			
		x = 2 from the following data				
		x 0 1 3 4				
		y -12 0 6 12				
		UNIT-II				
4	Fin	d an approximate solution of $y' = \frac{y-x}{y+x}$ such that	10 M			
	y(0))=1 at x=0.1 using 4 th order Runge-Kutta method.				
	OR					
5	a)	$\frac{\pi}{2}$ dx	5 M			
	Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1+x^2}$ using Trapezoidal rule.					
	b)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ using Simpsons $3/8^{th}$ rule and	5 M			
		also compare it with an exact value.				

	UNIT-III				
6	If f(z) is a regular function of z, prove that	10 M			
	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$				
	OR				
7	Construct an analytic function whose real part	10 M			
	is $u = \frac{x}{x^2 + y^2}$				
	UNIT-IV				
8	Evaluate $\int_C \frac{\cos \pi z^2}{(z-1)(z-2)^3} dz$ where C is $ z = 3$	10 M			
OR					
9	Obtain the Laurent series expansion of the function	10 M			
	$\frac{7z-2}{(z+1)z(z-2)}$, for $1 < z+1 < 3$				
	UNIT-V				
10	Evaluate $\int_{C} \frac{12z-7}{(2z+3)(z-1)^2} dz$ where C is $x^2 + y^2 = 4$	10 M			
	using Residue theorem.				
	OR				
11	Show by Contour integration, $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}$	10 M			